

TAG Meeting June 27, 2022

Webinar Final

TAG Meeting Agenda

- 1. Administrative Items Rich Wodyka
- 2022 Study Activities and Study Scope Update
 Sid DeSouza and Orvane Piper
- 3. NCTPC 2021 Collaborative Transmission Plan Mid-year Update – Mark Byrd
- 4. Duke Energy Red-Zone Transmission Expansion Plan Projects – Sammy Roberts
- 5. Regional Studies Update Bob Pierce
- 6. 2022 TAG Work Plan Rich Wodyka
- 7. TAG Open Forum Rich Wodyka

2022 Study Activities and Study Scope

Sid DeSouza - Duke Energy Progress Orvane Piper – Duke Energy Carolinas

Study Process Steps

1. Assumptions Selected

Completed

- 2. Study Criteria Established
- 3. Study Methodologies Selected
- 4. Models and Cases Developed
- 5. Technical Analysis Performed
- 6. Problems Identified and Solutions Developed
- 7. Collaborative Plan Projects Selected
- 8. Study Report Prepared

- > Study Year's for reliability analyses:
 - Near-term: 2027 Summer, 2027/2028 Winter
 - Longer-term: 2032/2033 Winter

Company	Generation Facility	2027S	2027/2028W	2032/2033W
DEC	Lincoln County CT (525 MW)	Included	Included	Included
DEC	Apex PV (30 MW)	Included	Included	Included
DEC	Aquadale PV (50 MW)	Included	Included	Included
DEC	Bear Branch PV (35 MW)	Included	Included	Included
DEC	Beaverdam PV (42 MW)	Included	Included	Included
DEC	Blackburn PV (61.7 MW)	Included	Included	Included
DEC	Broad River PV (50 MW)	Included	Included	Included
DEC	Brookcliff PV (50 MW)	Included	Included	Included
DEC	Healing Springs PV (32 MW)	Included	Included	Included
DEC	High Shoals PV (16 MW)	Included	Included	Included

Company	Generation Facility	2027S	2027/2028W	2032/2033W
DEC	Hornet PV (75 MW)	Included	Included	Included
DEC	Hunters Cove (50 MW)	Included	Included	Included
DEC	Lick Creek PV (50 MW)	Included	Included	Included
DEC	Misenheimer PV (74.4 MW)	Included	Included	Included
DEC	Newberry PV (74.5 MW)	Included	Included	Included
DEC	Oakboro PV (40 MW)	Included	Included	Included
DEC	Olin Creek PV (35 MW)	Included	Included	Included
DEC	Partin PV (50 MW)	Included	Included	Included
DEC	Pelham PV (32 MW)	Included	Included	Included
DEC	Pinson PV (20 MW)	Included	Included	Included

Company	Generation Facility	2027S	2027/2028W	2032/2033W
DEC	Quail PV (30 MW)	Included	Included	Included
DEC	Speedway (22.6 MW)	Included	Included	Included
DEC	Stanly PV (50 MW)	Included	Included	Included
DEC	Stony Knoll PV (22.6 MW)	Included	Included	Included
DEC	Sugar PV (60 MW)	Included	Included	Included
DEC	Two Hearted PV (22 MW)	Included	Included	Included
DEC	West River PV (40 MW)	Included	Included	Included
DEC	Westminster PV (75 MW)	Included	Included	Included

Company	Generation Facility	2027S	2027/2028W	2032/2033W
DEP	Cabin Creek Solar (70.2 MW)	Included	Included	Included
DEP	Gold Valley Solar (78.8 MW)	Included	Included	Included
DEP	Nutbush Solar (35 MW)	Included	Included	Included
DEP	Camp Lejeune Battery (10 MW)	Included	Included	Included
DEP	Sapony Creek (23.4 MW)	Included	Included	Included
DEP	Loftins Crossroads (75 MW)	Included	Included	Included
DEP	Roxboro CC Units 1-2 (2700 MW)	Not Included	Not Included	Included

Company	Generation Facility	2027S	2027/2028W	2032/2033W
DEC	Allen 1-5 (1083 MW)	Retired	Retired	Retired
DEC	Cliffside 5 (574 MW)	Retired	Retired	Retired
DEC	Lee 3 (120 MW)	Retired	Retired	Retired
DEP	Darlington Co 1,2,3,4,6,7,8,10 (514 MW)	Retired	Retired	Retired
DEP	Blewett CTs 1-4 and Weatherspoon CTs 1-4 (232 MW)	Retired	Retired	Retired
DEP	Roxboro Units 1-4 (2462 MW)	Not retired	Not retired	Retired
DEP	Mayo Unit 1 (746 MW)	Not retired	Not retired	Retired

Study Criteria Established

- NERC Reliability Standards
 - Current standards for base study screening
 - Current SERC Requirements
- Individual company criteria

Study Methodologies Selected

- > Thermal Power Flow Analysis
- Each system (DEC and DEP) will be tested for impact of other system's contingencies

Models and Cases Developed

- Annual Reliability Study
 - Near-term: 2027 Summer, 2027/2028 Winter
 - Longer-term: 2032/2033 Winter
- Local Economic Study
 - Evaluate a total of 14 hypothetical transfers in 2032/33
 Winter
- Public Policy Study
 - The scope of this study is still being developed at this time

Resource Supply Options for Hypothetical Transfer Scenarios

ID	Resource From	Sink	Test Level (MW)
1	PJM	DUK	1,000
2	SOCO	DUK	1,000
3	CPLE	DUK	1,000
4	TVA	DUK	1,000
5	PJM	CPLE	1,000
6	DUK	CPLE	1,000
7	DUK	SOCO	1,000
8	PJM	DUK/CPLE	1,000/ 1,000
9	DUK/CPLE	PJM	1,000/ 1,000
10	CPLE	PJM	1,000
11	DUK	PJM	1,000
12	DUK	TVA	1,000
13	DUK	SCPSA	750
14	PJM	SCPSA	500

14

Technical Analysis

- Conduct thermal screenings of the 2027S, 2027/28W and 2032/33W base cases
- Conduct thermal screenings for transfer scenarios in 2032/33W

Problems Identified and Solutions Developed

- Identify limitations and develop potential alternative solutions for further testing and evaluation
- Estimate project costs and schedule

Collaborative Plan Projects Selected

Compare all alternatives and select preferred solutions

Study Report Prepared

Prepare draft report and distribute to TAG for review and comment

NCTPC 2021 Collaborative Transmission Plan Update

Mark Byrd Duke Energy Progress

2022 Mid-Year Update to the 2021 Collaborative Transmission Plan

- One DEP project was completed
- Five DEP project cost estimates went up and one went down
- > Two DEP projects were accelerated
- Four DEC projects were delayed
- Total Reliability Project Cost estimates changed from \$694M to \$748M

Reliability Projects in 2021 Plan			
Reliability Project	то	Planned I/S Date	
Durham-RTP 230kV Line, Reconductor	DEP	TBD	
Asheboro-Asheboro East 115 kV North Line, Reconductor	DEP	Completed June 2022	
Windmere 100 kV Line, (Dan River-Sadler), Construct	DEC	Delayed June 2024	

Reliability Projects in 2020 Plan (continued)			
Reliability Project	то	Planned I/S Date	
Wilkes 230/100 kV Tie Station, Construct	DEC	June 2024	
Craggy-Enka 230 kV Line, Construct	DEP	Accelerated December 2024	
Cokesbury 100 kV Line (Coronaca- Hodges), Upgrade	DEC	Delayed June 2026	
South Point Switching Station, Construct	DEC	Delayed December 2025	

Reliability Projects in 2020 Plan (continued)			
Reliability Project	то	Planned I/S Date	
Wateree 115 kV Plant, Upgrade 115/100 kV Transformers	DEP	Accelerated July 2023	
Carthage 230/115 kV Substation, Construct Sub	DEP	December 2025	
Falls 230 kV Sub, Add 300 MVAR SVC	DEP	December 2028	
Castle Hayne–Folkstone 115 kV Line, Rebuild	DEP	December 2026	
Holly Ridge North 115 kV Switching Station, Construct	DEP	December 2026	

Reliability Projects in 2020 Plan (continued)			
Reliability Project	ТО	Planned I/S Date	
Coronaca 100 kV Line (Coronaca-Creto), Upgrade and Add Second Circuit	DEC	Delayed December 2029	
Monroe 100 kV Line (Lancaster-Monroe), Upgrade	DEC	June 2027	
Westport 230 kV Line (McGuire-Marshall), Upgrade	DEC	TBD	

Proposed Updates to the Collaborative Plan at Mid-Year

- Eighteen (18) new Red Zone Transmission Expansion Plan projects are proposed to be added to the Collaborative Plan at mid-year.
- The justification for these projects is based on the need to reduce transmission system constraints impacting Duke Energy's ability to connect renewable generation, ensure system reliability, and achieve public policy
- These projects have been identified as constraints in prior generation interconnection studies

Red Zone Projects Proposed to be Added			
Project	то	Planned I/S Date	
Lee 100 kV (Lee-Shady Grove), Upgrade	DEC	December 2026	
Piedmont 100 kV (Lee-Shady Grove), Upgrade	DEC	December 2026	
Newberry 115 kV (Bush River-DESC), Upgrade	DEC	December 2026	
Clinton 100 kV (Bush River-Laurens), Upgrade	DEC	December 2026	

Red Zone Projects Proposed to be Added (continued)			
Project	ТО	Planned I/S Date	
Cape Fear Plant – West End 230 kV Line, Upgrade	DEP	September 2026	
Erwin – Fayetteville East 230 kV Line, Upgrade	DEP	September 2026	
Erwin – Fayetteville 115 kV Line, Upgrade	DEP	September 2026	
Rockingham – West End 230 kV West Line, Upgrade	DEP	September 2026	

Red Zone Projects Proposed to be Added (continued)				
Project	ТО	Planned I/S Date		
Fayetteville-Fayetteville Dupont 115 kV Line – 3.2 miles section, Upgrade *	DEP	September 2026		
Milburnie 230 kV Substation, Add redundant bus protection	DEP	September 2026		
Erwin-Milburnie 230 kV Line, Upgrade	DEP	December 2026		
Sutton Plant-Wallace 230 kV Line, Upgrade	DEP	December 2026		

Red Zone Projects Proposed to be Added (continued)				
Project	ТО	Planned I/S Date		
Weatherspoon-Marion 115 kV Line, Upgrade	DEP	December 2026		
Camden-Camden Dupont 115 kV Line, Upgrade	DEP	December 2026		
Camden Junction-DPC Wateree 115 kV Line, Upgrade	DEP	December 2026		
Robinson Plant-Rockingham 115 kV Line, Upgrade	DEP	December 2026		

Red Zone Projects Proposed to be Added (continued)				
Project	ТО	Planned I/S Date		
Robinson Plant-Rockingham 230 kV Line, Upgrade	DEP	December 2026		
Fayetteville-Fayetteville Dupont 115 kV Line – 4.9 miles section, Upgrade	DEP	December 2026		

Review Study Mapping Spreadsheet

- Mapping of 79 interconnection studies to the 18 Red Zone Transmission Expansion Plan Projects
- All 79 Requests shown were assigned Network Upgrades and subsequently Withdrew from the Queue
- Studies were performed from 2017 through 2022
- Example study for DEP Q385 (1 of 79 studies)

Review Study Mapping Spreadsheet

Refer to Separate Spreadsheet Provided for Mapping of Queue Request Studies to Proactive Projects

Generator Interconnection Facilities Study Report

Sumter County, SC 100.0 MW Solar Farm Queue #385

I

April 23, 2019 Duke Energy Progress Transmission Department

Example study for DEP Q385

- > 100 MW Solar Generator
- Requested Interconnection to the Robinson Plant-Sumter 230kV Line
- Assigned 1 Red Zone Project
- Contingent on 5 additional Red Zone
 Projects (Friesian Projects)

All relevant contingency categories from NERC Standard TPL-001-4 have been analyzed in this study. Contingency analysis study results show that interconnection of these generation facilities **DOES** result in potential thermal overloads on the DEP system. The following facilities will need to be upgraded to accommodate the proposed generation:

Table 2: Network Upgrades Assigned to This Request

Facility	Sections	Length (mi)	Upgrade	Cost Estimate (\$)	Time To Complete (years)
Fayetteville — Fayetteville DuPont SS 115 kV Line	Hope Mills Church St – Fayetteville	4.9	Reconductor to 3- 1590 ACSR	9,531,580	5

The results in this study are dependent on assumptions regarding prior-queued interconnection requests and transmission plans. In particular, this request is Contingent upon the network upgrades described in Table 3 for prior-queued requests and Table 4 from the utility transmission plan. If any prior-queued requests drop out of the queue or other assumptions change, these study results may change significantly.

Table 3: Contingent Network Upgrades Assigned to Prior Requests

Assignee	Facility	Sections	Length (mi)	Upgrade	Cost Estimate (\$M)	Time To Complete (years)
	Erwin - Fayetteville	All	23	Reconductor	83.5	4
Q380	East			to		
	230kV line			6-1590 ACSR		
	Fayetteville -	Hope Mills Ch. St. –	3	Reconductor	8.4	3
Q380	Fayetteville	Roslin Solar		to		
	DuPont SS 115kV			3-1590 ACSR		
	line					
Q380	Cape Fear - West	West End – Center	26	Reconductor	89.7	4
	End	Ch. –		to		
	230kV line	Sanford Garden St –		6-1590 ACSR		
		Sanford US1				
Q380	Erwin - Fayetteville	Fay Slocomb Tap –	9	Reconductor	27.2	ŝ
	115kV line	Beard - Wade		to		
				3-1590 ACSR		

Rockingham-West End 230 kV Line from Q380 study was also a Contingent Upgrade for Q385

Generator Interconnection Facilities Study Report: Scotland County, NC – 75.0 MW, Queue #380

3 RESULTS

3.1 Power-flow Analysis Results

Facilities that may require upgrade within the first three to five years following the in-service date are identified. Based on projected load growth on the DEP transmission system, facilities of concern are those with post-contingency loadings of 95% or greater of their thermal rating and low voltage of 92% and below, for the requested in-service year or the in-service year of a higher queued request. The identification of these facilities is crucial due to the construction lead times necessary for certain system upgrades. This process will ensure that appropriate focus is given to these problem areas to investigate whether construction of upgrade projects is achievable to accommodate the requested interconnection service.

All queue requests, as well as nearby existing and prior-queued generation, were modeled and assumed to be operating at full output.

Contingency analysis study results show that interconnection of these generation facilities **DOES** result in potential thermal overloads on the DEP system. The following facilities will need to be upgraded to accommodate the proposed generation:

Facility	Sections	Length (mi)	Upgrade	Cost Estimate (\$M)	Time To Complete (years)
Erwin - Fayetteville East 230 kV line	All	23	Reconductor to 6-1590 ACSR	40.8	4
Fayetteville – Fay. DuPont SS 115kV line	Hope Mills Church St. – Roslin Solar	3	Reconductor to 3-1590 ACSR	4.5	3
Cape Fear - West End 230 kV line	West End – Center Ch. – Sanford Garden St – Sanford US 1	26	Reconductor to 6-1590 ACSR	52.0	4
Cape Fear - West End 230 kV line	Sanford Deep River Tap Point – Sanford Horner Blvd.	4.4	Upgrade to full conductor rating	1.0	2
Erwin - Fayetteville 115kV line	Fay Slocomb Tap – Beard - Wade	9	Reconductor to 3-1590 ACSR	13.5	3
Rockingham – West End 230kV Line	Eden Solar Sw. St West End	7.7	Upgrade to full conductor rating	0.5	2
Total				112.3	4

Table 2: Network Upgrades

These results are dependent on assumptions regarding prior-queued interconnection requests. If any prior-queued requests drop out of the queue, these results may change.

- 4 -

5 Q380 Red Zone Projects (Friesian Projects)

Duke Energy Progress October 2, 2017
Red-Zone Transmission Expansion Plan Projects

TAG Meeting

JUNE 27, 2022

BUILDING A SMARTER ENERGY FUTURE ®

- Following Local Transmission Planning Process as defined in Attachment N-1 of Joint OATT and effectuated by the NCTPC
- Presented RZEP projects as generator interconnection study informed and described need for projects to OSC in March
- Shared initial mapping of queue request studies to RZEP projects with OSC in April
- Provided updated information on number of generator interconnection studies reflecting RZEP upgrades needed for interconnection to OSC, PWG in June
- NCTPC included RZEP projects in draft 2021 Plan Mid-year Update Report distributed to TAG and posted on NCTPC website for input from stakeholders
- Presenting the draft 2021 Plan Mid-year Update Report with the RZEP projects included at the June 27 TAG meeting
- Soliciting TAG feedback/input during the TAG meeting as well as a period after the TAG meeting
- Current plan is for OSC to consider TAG input and decide on approval of draft 2021 Plan Mid-year Update Report by mid-August

Red-Zone Constraints Resolved Only Through Network Upgrades

- Only queue informed RZEP upgrades will start to unlock the red-zone for additional solar to interconnect
- Even though this red-zone guidance has been provided since CPRE began, developers still request interconnections in the red-zone due to:
 - Lower land lease rates
 - Availability of larger land parcels
 - NREL GHI Map shows slightly better irradiance

Attachment 1

DEC and DEP Constrained Areas

service territory

In accordance with the OATT, Attachment N-1 Section 4.1, the RZEP projects are needed to integrate new generation resources to meet Carbon Plan objectives

DEC

- Projects 1 4 are in DEC and the estimated cost is \$241M
- Projects 1 4 have historical generator interconnection studies (excl. TCS) representing 1500+ MW of solar resources

DEP

- Projects 5 18 are in DEP and the estimated cost is \$319.6M
- Projects 5 18 have historical generator interconnection studies (excl. TCS) representing 3700+ MW of solar resources

Past generator interconnection requests show RZEP are needed to integrate new generation resources, as well as supporting HB951 objectives (at least 5400MW of new solar interconnected between 2026 – 2029 to achieve 70% by 2030)

RZEP Projects are Not a New Concept

- Red Zone constraints have been major cause of interconnection disputes since 2019
- Highlighted need for proactive transmission planning during the Oct. 6, 2021 NCUC Technical Conference in Docket No. E-100, Sub 165 (2020 IRP Docket)

 Aggressive volumes of additional solar to achieve material CO2 reduction were identified in the 2020 IRP portfolios DUKE

- 8 12 GW of additional solar identified in Portfolios B through F for meaningful CO2 reductions
- The solar transmission network upgrade proxy used for interconnecting new solar has been progressively increasing as well as past resource plans showing increasing solar needs

DEC	DEP
\$/W	\$/W
0.1672	0.1168
0.1913	0.1470
0.2358	0.1705
	DEC \$/W 0.1672 0.1913 0.2358

	Base without Base with Carbon Policy Carbon Policy		Earliest Practicable Coal Retirements		70% CO₂ Reduction: High Wind		70% CO₂ Reduction: High SMR		No New Gas Generation				
PORTFOLIO		A B C)	D		Ê		F				
System CO ₂ Reduction (2030 2035) ¹	56%	53%	59%	62%	64%	64%	70%	73%	71%	74%	65%	73%	
Present Value Revenue Requirement (PVRR) [\$B] ²	\$79.8		\$8	.5 \$84.1		4.1	\$100.5		\$95.5		\$108.1		
Estimated Transmission Investment Required [\$B] ³	\$(0.9	\$1	1.8	\$1	.3	\$7.5		\$3.1		\$8.9		
Total Solar [MW] ^{4, 5} by 2035	8,	8,650 12,300		12,400 16,250		16,250		16,400					
Incremental Onshore Wind [MW] ⁴ by 2035		0	750		1,3	50	2,850		2,850		3,150		Γ
Incremental Offshore Wind [MW] ⁴ by 2035	► <mark>□</mark> °		(D	0		2,650		250		2,650		
Incremental SMR Capacity [MW] ⁴ by 2035		0	(D	C)	0		1,350		700		
Incremental Storage [MW] ^{4, 6} by 2035	1,0	050	2,2	200	2,2	00	4,400		4,400		7,400		
Incremental Gas [MW] ⁴ by 2035	9,600		7,3	350	9,600		6,400		6,100		0		
Total Contribution from Energy Efficiency and Demand Response Initiatives [MW] ⁷ by 2035	2,050		2,0)50	2,050		3,350		3,350		3,350		
Remaining Dual Fuel Coal Capacity [MW] ^{4, 8} by 2035	3,050		3,050		0		0		0		2,200		
Coal Retirements	Most Economic		M Econ	Most Economic		Earliest Practicable		Earliest Practicable ⁹		Earliest Practicable ⁹		Most Economic ¹⁰	
Dependency on Technology & Policy Advancement		D	C)							

DEC / DEP COMBINED SYSTEM PORTFOLIO RESULTS TABLE

Solar in Carbon Plan filed on May 16, 2022

- Portfolio 1 70% CO2 Reduction by 2030
- 5.4 GW of additional new solar by 2030
 - Assumes 6800 MWac connected by 2025
- Up to an additional 11.9 GW of new solar by 2035
- Table I-2 from Appendix I of the Carbon Plan shows aggressive solar interconnection to meet 70% by 2030

Beginning of Year	2027	2028	2029	2030+
70% by 2034 with Wind or Nuclear	750	1,050	1,350	1,350
70% by 2030	750	1.050	1.800	1.800

Table I-2: Maximum Solar (MW) Allowed to Connect Annually (by Jan. 1 of year shown)

Figure 3-1: Portfolio Snapshot to Achieve 70% Interim Target (2030-2034)

Green Source Advantage Note 4: Capacities as of beginning of 2035

DEC and DEP Red Zone Transmission Expansion Plan

Solar Viability Map Reflects RZEP Need

- Using the ESRI Mapping Application
- This Map reflects:
 - NREL provided exclusion areas based on wetlands, national and state parks, federal lands
 - Solar viability based on population density, forestation, land availability
 - Moderate solar viability (lime green)
 - Maximum solar viability (dark green)

Solar Viability Map Reflects RZEP Need

- Using the ESRI Mapping Application
- This Map reflects:
 - NREL provided exclusion areas based on wetlands, national and state parks, federal lands
 - Solar viability based on population density, forestation, land availability
 - Moderate solar viability (lime green)
 - Maximum solar viability (dark green)

Table I-2: Maximum Solar (MW) Allowed to Connect Annually (by Jan. 1 of year shown)

Beginning of Year	2027	2028	2029	2030+
70% by 2034 with Wind or Nuclear	750	1,050	1,350	1,350
70% by 2030	750	1,050	1,800	1,800

DEC Transitional Cluster \$/W - 473 MW of solar

Alternative Approaches: Wait on 2022 DISIS Results and Carbon Plan Approval

- Waiting on Carbon Plan approval through Commission Order would result in at least a minimum of 6-month delay
- 2022 Solar Procurement Bids that are dependent on the RZEP upgrades could be influenced by not considering upgrades in interconnection studies
 - Need for coordinated proactive transmission expansion planning and timely construction identified as key interdependency and execution risk in Carbon Plan (See App. P at 24 for more detailed discussion of Execution and Risk Management).
 - Similar to TCS and prior GIR results, will significantly challenge meeting the needed annual solar interconnections to meet carbon reduction objectives by 2030

- Current DISIS Cluster Study Process takes 1.75 years from the end of Annual Enrollment to a signed Interconnection Agreement if no restudy is required
- Network Upgrade projects start when the IA is signed
- Network Upgrade projects can take up to 4 years from project initiation to the in-service date dependent on outage coordination and type of upgrade
- Thus, from Enrollment to Operation for a solar facility could take 5.75 years

- Per the formal Local Transmission Planning Process, TAG Members have the opportunity to provide input during and after today's TAG meeting which includes input on whether to proactively include the RZEP projects in Local Transmission Plan
- RZEP Projects need to be considered for all future solar procurements including 2022 to meet timing of carbon reduction objectives 70% by 2030
- RZEP Projects are cost effective and provide long-term benefit versus a one and done interconnection cycle
- RZEP Projects have additional reliability benefits for the DEC and DEP systems
 - Rebuild projects involve replacing aging structures with new more reliable equipment
 - New higher capacity conductors generally have lower impedance that reduces transmission losses
 - Furthermore, subsequent studies performed at OSC member request showed the RZEP projects do not cause any significant impact on other transmission lines

- TAG is invited to provide any additional comments or questions to the OSC on the 2022 Mid-Year Update to the 2021 Collaborative Transmission Plan and the proposed RZEP Projects
- Provide input by July 6, 2022 to Rich Wodyka (rich.wodyka@gmail.com)

Regional Studies Reports

Bob Pierce Duke Energy Carolinas

SERC Long Term Working Group Update

SERC Long Term Working Group

- Completed work on 2022 series of LTWG cases
- Beginning 2027 Summer Study
- Building 2022 series MMWG cases

SERTP

- 1st Quarter Meeting (WebEx) was held on
 March 22th
- > 2nd Quarter Meeting (WebEx) will be June 30th
- 2022 Economic Planning Studies

No.	Requestor	Source	Sink	MW	Year
1	NCEMC	Southern	DEC	1000	2032 (s)
2	NCEMC	SCE & G	DEC	1000	2032 (s)
3	Santee Cooper	SOCO	SC	600	2027 (w)
4	Santee Cooper	SOCO	SC	500	2024 (s)
5	Santee Cooper	DEC	SC	600	2027 (w)

http://www.southeasternrtp.com/

EIPC

Assisting with DOE on National Transmission Study

2022 TAG Work Plan

Rich Wodyka Administrator

NCTPC Overview Schedule

Reliability Planning Process

> Perform analysis, identify problems, and develop solutions

Review Reliability Study Results

Local Economic Planning Process

Propose and select Local Economic Studies and Public Policy Study scenarios

> Perform analysis, identify problems, and develop solutions

Review Local Economic Study and Public Policy Results

January - February – March

> 2021 Study Update

- ✓ Receive Final 2021 Collaborative Transmission Plan Report
- ✓ Receive Draft 2021 Public Policy Study Report
 - TAG provide input to the OSC on Public Policy Study results

> 2022 Study – Finalize Study Scope of Work

- Receive request from OSC to provide input on proposed Local Economic Study scenarios and interfaces for study
 - TAG provide input to the OSC on proposed Local Economic Study scenarios and interfaces for study
- Receive request from OSC to provide input in identifying any public policies that are driving the need for local transmission
 - TAG provide input to the OSC in identifying any public policies that are driving the need for local transmission for study
- ✓ Receive final 2022 Reliability Study Scope for comment
 - TAG review and provide comments to the OSC on the final 2022 Study Scope

January - February – March

First Quarter TAG Meeting – March 28th

> 2021 Public Policy Study Analysis

 Receive report on and discuss the final draft of the 2021 Public Policy Study Report

> 2022 Study Update

- Receive a report on the Local Economic Study scope and any public policy scenarios that are driving the need for local transmission for study
- ✓ Receive a progress report on the Reliability Planning study activities and the final 2022 Study Scope

April - May – June

<u>Second Quarter TAG Meeting – June 27</u>

> 2022 Study Update

✓ Receive a progress report on study activities

- Receive update status of the upgrades in the 2021 Collaborative Plan
- TAG is invited to provide any additional comments or questions to the OSC on the 2022 Mid-Year Update to the 2021 Collaborative Transmission Plan and proposed RZEP Projects. Provide input by July 6, 2022 to Rich Wodyka (rich.wodyka@gmail.com)

July - August – September

Third Quarter TAG Meeting – TBD

> 2022 Study Update

- Receive a progress report on the study activities and preliminary results
- TAG is requested to provide feedback to the OSC on the technical analysis performed, the problems identified as well as proposing alternative solutions to the problems identified

October - November - December

Fourth Quarter TAG Meeting – TBD

> 2022 Study Update

- TAG will receive feedback from the OSC on any alternative solutions that were proposed by TAG members
- Receive and discuss final draft of the 2022 Collaborative
 Transmission Plan Report

> 2023 Study Scope

• Discuss potential study scope scenarios for 2023 studies

TAG Open Forum Discussion

Comments or Questions ?

June 27, 2022

The Oversight / Steering Committee of the North Carolina Transmission Planning Collaborative

Honors Kim Jones

for your many years of Dedicated Participation and your Contributions on the NCTPC Transmission Advisory Committee.

Wishing you Health and

Happiness in your Retirement.

June 27, 2022 The Oversight / Steering Committee of the North Carolina Transmission Planning Collaborative Honors Mark Byrd for your many years of Dedicated Service and your Contributions to the Reliable and Economic Development of the North Carolina Transmission System. Wishing you Health and

Happiness in your Retirement.