

TAG Meeting July 19, 2016

NCEMC Office Raleigh, NC

TAG Meeting Agenda

- 1. Administrative Items Rich Wodyka
- 2. 2016 Study Activities Update Orvane Piper
- 3. NCTPC 2015 Collaborative Transmission Plan Mid-year Update – Mark Byrd
- 4. Regional Studies Update Bob Pierce
- 5. 2016 TAG Work Plan Update Rich Wodyka
- 6. TAG Open Forum Rich Wodyka

2016 Study Activities Update

Orvane Piper Duke Energy Carolinas

Steps and Status of the Study Process

1. Assumptions Selected

completed

- 2. Study Criteria Established
- 3. Study Methodologies Selected
- 4. Models and Cases Developed
- 5. Technical Analysis Performed
- 6. Problems Identified and Solutions Developed
- 7. Collaborative Plan Projects Selected
- 8. Study Report Prepared

Studies for 2016

- Annual Reliability Study
 - Assess DEC and DEP transmission systems' reliability and develop a single Collaborative Transmission Plan
- Sensitivities
 - Assess DEC and DEP interface with neighboring systems by modeling hypothetical transfers

Sensitivity #1

- Forced outage of multiple nuclear units
 - Study year 2026 Summer
 - DEP's Brunswick Units (1 & 2)
 - Capacity replacement equally from Southern Company and PJM Market.

Sensitivity #2

- Identification of permanent transmission upgrades to eliminate use of specific operating procedures
 - Study year 2026 Summer
 - 1 DEC/DEP operating procedure
 - 4 DEP operating procedures

Base Case Model Development

- Latest updates to detailed models for DEC and DEP systems will be included
- Start with 2015 series MMWG cases
- Adjustments may be made based on additional coordination with neighboring transmission systems
- Planned transmission additions from updated
 2015 Plan may be included in models

Technical Analysis

- Conduct thermal screenings of the 2021 and 2026 base cases
- Conduct thermal screenings of 2026 sensitivities

Category	Initial Condition	Event
P0 No Contingency	Normal System	None
P1 Single Contingency	Normal System	 Loss of one of the following: Generator Transmission Circuit Transformer Shunt Device Single Pole of a DC line
P2 Single Contingency	Normal System	 Opening of a line section w/o a fault Bus Section Fault Internal Breaker Fault (non-Bus-tie Breaker) Internal Breaker Fault (Bus-tie Breaker)
P3 Multiple Contingency	Loss of generator unit followed by System adjustments	 Loss of one of the following: Generator Transmission Circuit Transformer Shunt Device Single pole of a DC line

Category	Initial Condition	Event
P4 Multiple Contingency (Fault Plus stuck breaker)	Normal System	 Loss of multiple elements caused by a stuck breaker (non-Bus-tie Breaker) attempting to clear a Fault on one of the following: 1. Generator 2. Transmission Circuit 3. Transformer 4. Shunt Device 5. Bus Section 6. Loss of multiple elements caused by a stuck breaker (Bus-tie Breaker) attempting to clear a Fault on the associated bus

Category	Initial Condition	Event
P5 Multiple Contingency (Fault plus relay failure to operate)	Normal System	 Delayed Fault Clearing due to the failure of a non-redundant relay protecting the Faulted element to operate as designed, for one of the following: 1. Generator 2. Transmission Circuit 3. Transformer 4. Shunt Device 5. Bus Section
P6 Multiple Contingency (Two overlapping singles)	Loss of one of the following followed by System adjustments. 1. Transmission Circuit 2. Transformer 3. Shunt Device 4. Single pole of a DC line	 Loss of one of the following: Transmission Circuit Transformer Shunt Device Single pole of a DC line

Category	Initial Condition	Event
P7 Multiple Contingency (Common Structure)	Normal System	 The loss of: 1. Any two adjacent (vertically or horizontally) circuits on common structure 2. Loss of a bipolar DC line

Problems Identified and Solutions Developed

- Identify limitations and develop potential alternative solutions for further testing and evaluation
- Estimate project costs and schedule

		<u>2021 (%</u>	Loading)				Overloaded Bra	Inch
21S	Br1Dn	HarDn	Rob2Dn	21W	AshvDn	Comments	Name	Branch Type
96.6	93.7	94.8	92.5	2100	107	Operating Guide	BADIN - TUCKERTOWN	100 kV Line
90.0	93.7	94.0				Upgrade 6.3 miles	BOGER CITY BL	100 kV Line
				110.2	106.1			
				100	100.1	Upgrade 6.3 miles	BOGER CITY WH	100 kV Line
					91.5	N/A, outside 10 year plan	DAVIDSON RIVER BL	100 kV Line
				94.5	108.1	upgrade 4.7 miles (<\$10 M)	DAVIDSON RIVER BL	100 kV Line
					95.5	AEU	DAVIDSON RIVER WH	100 kV Line
94.5	94.7	94.7	94.7			Tarrant Rd SS (<\$10 M)	DEEP RIVER WH	100 kV Line
94.2						Upgrade 13.9 miles	DUNCAN WH N	100 kV Line
				101.7	104.4	Upgrade 11.8 miles	HARLEY BL	100 kV Line
				101.8	104.3	Upgrade 11.8 miles	HARLEY BL	100 kV Line
				109.9	115.2	Upgrade 11.8 miles	HARLEY WH	100 kV Line
108.6	105.3	106.6	104		120.3	Operating Guide	HIGH ROCK - TUCKERTOWN	100 kV Line
					91.6	N/A, outside 10 year plan	HOGBACK BL	100 kV Line
					93.2	N/A, outside 10 year plan	HOGBACK WH	100 kV Line
93.3	97.5	98.4	96.7			Upgrade 9.8 miles	LINDEN ST BL	100 kV Line
	94.8	95.7	94			Upgrade 9.8 miles	LINDEN ST WH	100 kV Line
	94.7	95.6	93.9			Upgrade 3.2 miles	LINDEN ST WH	100 kV Line
	95	95.8				Upgrade 9.7 miles	PIEDMONT BL	100 kV Line
113.9	113.8	113.8	113.8			Operating Guide	WATEREE BL	100 kV Line
113.9	113.9	113.9	113.9			Operating Guide	WATEREE WH	100 kV Line
98.3	98.4	98.6	98.4			Springfield SS (<\$10 M)	WEDDINGTON BL	100 kV Line
98.3	98.6	98.6	98.6			Springfield SS (<\$10 M)	WEDDINGTON BL	100 kV Line
				106.1	100.3	DEP proposed project	PISGAH TIE 09	115/100 kV Transformer
				106.6	100.8	DEP proposed project	PISGAH TIE 10	115/100 kV Transformer
90.9						N/A, outside 10 year plan	FISHER BL	230 kV Line
90.9						N/A, outside 10 year plan	FISHER WH	230 kV Line
101.7	92.4	91.7	93.6			Operating Guide	LONDON CREEK BL	230 kV Line
101.7	92.4	91.7	93.6			Operating Guide	LONDON CREEK WH	230 kV Line
92.1						N/A, outside 10 year plan	SADLER BL	230 kV Line
92.1						N/A, outside 10 year plan	SADLER WH	230 kV Line
	93.2	93.6	92.7			add second 230 kV circuit (<\$10 M)	SANDY RIDGE BL	230 kV Line
				95.3		AEU	STAMEY BL	230 kV Line
95.1						AEU	ALLEN 2B	230/100 kV Transformer
93.2						N/A, outside 10 year plan	ALLEN STEAM PL 06	230/100 kV Transformer
				109.8	102.5	AEU	PISGAH TIE 01	230/100/44 kV Transformer
				107.1	100.1	AEU	PISGAH TIE 02	230/100/44 kV Transformer
104.7						add transformer (<\$10 M)	SADLER TIE 03	230/100/44 kV Transformer
109.3				98.9		add transformer (<\$10 M)	SADLER TIE 04	230/100/44 kV Transformer
94.5	90.3	90.7				AEU	STONEWATER TIE A4	230/100/44 kV Transformer
94.4	90.3	90.7				AEU	STONEWATER TIE A5	230/100/44 kV Transformer
98.9	91.9	91.8	91.7	91.5		AEU	KATOMA	500 kV Line
						N/A, outside 10 year plan	PARKWOOD TIE 05	500/230 kV Transformer
		91.2					FARRAGOD HE 05	

			2026	(% Loading)				Overloa	aded Branch
26S	26S_Br1D	n 26S_HarDr	126S_Rob2Di	n Brunswick	Brunswick_HarDn	Brunswick_Rob2Dn	Comments	Name	Branch Type
105	99.6	101		99.9	100.3		Operating Guide	BADIN - TUCKERTOWN	100 kV Line
101.4	101.6	101.6	101.5	101.5	101.6	97.4	Tarrant Rd SS (<\$10 M)	DEEP RIVER WH	100 kV Line
113.9	112.2	111.5	113.4	106.2	111.6	103.6	Upgrade 13.9 miles	DUNCAN WH N	100 kV Line
118.1	112	113.6	110.2	112.3	112.8	101.6	Operating Guide	HIGH ROCK - TUCKERTOWN	100 kV Line
				100	100	101.8	Upgrade 9.8 miles	LINDEN ST BL	100 kV Line
114	113.9	113.9	113.9	114	113.9	114.4	Operating Guide	WATEREE BL	100 kV Line
114	113.9	113.9	113.9	114	113.9	114.4	Operating Guide	WATEREE WH	100 kV Line
106.1	106.3	106.3	106.2	106.4	106.4	101.7	Springfield SS (<\$10 M)	WEDDINGTON BL	100 kV Line
106.8	107.1	107.1	107	107.2	107.1	102.5	Springfield SS (<\$10 M)	WEDDINGTON BL	100 kV Line
				96.6		98.8	Upgrade 24.5 miles	CLAY HILL BL	230 kV Line
						99.2	Upgrade 21.7 miles	HARRISBURG BL	230 kV Line
						99.2	Upgrade 21.7 miles	HARRISBURG WH	230 kV Line
125.7	125.9	125.2	127.1	118.9	125.3	116.3	Operating Guide	LONDON CREEK BL	230 kV Line
125.7	125.9	125.2	127.1	118.9	125.3	116.3	Operating Guide	LONDON CREEK WH	230 kV Line
95.3							N/A, outside 10 year plan	RIPP BL	230 kV Line
95.3							N/A, outside 10 year plan	RIPP WH	230 kV Line
	96.3	96.7	95.7	98.1	96.7	99.3	N/A, outside 10 year plan	SANDY RIDGE BL	230 kV Line
	92.6	93	92.8	96.4			N/A, outside 10 year plan	STEELBERRY BL	230 kV Line
	92.6	93	92.8	96.4			N/A, outside 10 year plan	STEELBERRY WH	230 kV Line
	92.8	94.1	91.9				N/A, outside 10 year plan	WESTPORT WH	230 kV Line
	90	94.1	94.5				N/A, outside 10 year plan	ALLEN 2B	230/100 kV Transformer
96	90.4	90.2	90.4				N/A, outside 10 year plan	BECKERDITE TIE 02	230/100 kV Transformer
96.5	90.9	90.7	90.8				N/A, outside 10 year plan	BECKERDITE TIE 03	230/100 kV Transformer
	90.4	90.3	90.5				N/A, outside 10 year plan	BUCK TIE AT3	230/100 kV Transformer
	90.4	90.3	90.5				N/A, outside 10 year plan	BUCK TIE AT4	230/100 kV Transformer
106.4				107.2			add transformer (<\$10 M)	SADLER TIE 03	230/100/44 kV Transformer
111				111.8			add transformer (<\$10 M)	SADLER TIE 04	230/100/44 kV Transformer
102.5	98.3	98.6	97.9	104.2	98.7	95.1	AEU	STONEWATER TIE A4	230/100/44 kV Transformer
		91	90.3				N/A, outside 10 year plan	STONEWATER TIE A4	230/100/44 kV Transformer
102.4	98.2	98.6	97.9	104.1	98.6	95.1	AEU	STONEWATER TIE A5	230/100/44 kV Transformer
		91.1	90.3				N/A, outside 10 year plan	STONEWATER TIE A5	230/100/44 kV Transformer
97.3				95.9			N/A, outside 10 year plan	KATOMA	500 kV Line
	93.5	95.8	90.8	96.2	96	95.3	N/A, outside 10 year plan	PARKWOOD TIE 05	500/230 kV Transformer

21S Base Reliabilty Study %Loading			_oading		
Base Case	Br1DnTRM	HarDnTRM	Rob2DnTRM	Notes	Monitored Facility
	99.57			Proposed Project	PILKINGTON LIBBEY-OWENS-FORD-BUTLER TAP 115 kV LINE
	98.17			Proposed Project	MAXTON-BUTLER TAP 115 KV LINE
93.20		92.11		Beyond 10-Year Planning Horizon	VISTA-CASTLE HAYNE 115 KV LINE
			94.57	Beyond 10-Year Planning Horizon	EASTOVER-SHAW AFB TAB 115 kV LINE
			90.50	Beyond 10-Year Planning Horizon	CAMDEN TAP-CAMDEN CITY 115 KV LINE
	92.86	92.11	104.48	Operating Procedure	CAMDEN-CAMDEN TAP 115 kV LINE
	90.70		101.71	Operating Procedure	CAMDEN-CAMDEN INVISTA 115 kV LINE

21/22W Base Reliability %Loading			
Base Case	AshvCT1DnTRM	Notes	Monitored Facility
90.98	116.04	Operating Procedure	PISGAH-CRADLE OF FORESTRY 115 kV LINE
	96.97	Operating Procedure	CANTON-CRADLE OF FORESTRY 115 kV LINE
97.79	N/A	Proposed Project	MAXTON-BUTLER TAP 115 KV LINE

26	S Base Reliab	ilty Study %Loa	ading	<u>26S_Br</u>	1&2Dn Study %L	oading		
Base Case	Br1DnTRM	HarDnTRM	Rob2DnTRM	Base Case	HarDnTRM	Rob2DnTRM	Notes	Monitored Facility
				92.06			Beyond 10-Year Planning Horizon	SUTTON-CASTLE HAYNE 230 kV LINE
	90.33						Beyond 10-Year Planning Horizon	SUTTON-WILMINGTON NINTH & ORANGE 230 kV LINE
					91.13	90.68	Beyond 10-Year Planning Horizon	WEATHERSPOON-WEST LUMBERTON 115 kV LINE
						93.77	Beyond 10-Year Planning Horizon	CAPE FEAR SOUTH-LILLINGTON 115 kV LINE
						98.84	Beyond 10-Year Planning Horizon	DARLINGTON COUNTY-S BETHUNE 230 kV LINE
					92.77		Beyond 10-Year Planning Horizon	RALEIGH BRIERS CREEK-DURHAM 230 kV LINE
94.26	94.58	95.04	94.33	94.81	95.84	94.97	Beyond 10-Year Planning Horizon	CHESTNUT HILLS-MILBURNIE 115 kV LINE
		91.05			92.52		Beyond 10-Year Planning Horizon	ROCKINGHAM-WADESBORO TAP 230 KV LINE
				94.31	99.74	101.10	*Ancillary Equipment Upgrade	CUMBERLAND-GARLAND 230 kV LINE
	98.49			110.25	116.08	111.29	Proposed Project	PILKINGTON LIBBEY-OWENS-FORD-BUTLER TAP 115 KV LINE
				98.63	104.07	99.26	Proposed Project	MAXTON-PEMBROKE 115 kV LINE
	96.99			108.75	114.57	109.78	Proposed Project	MAXTON-BUTLER TAP 115 KV LINE
97.67		96.56	92.61				Beyond 10-Year Planning Horizon	VISTA-CASTLE HAYNE 115 KV LINE
91.22		90.12					Beyond 10-Year Planning Horizon	VISTA-JONES-ONSLOW EMC HUGH BATTS 115 kV LINE
98.21	98.90	98.33	98.29	99.75	100.46	100.07	*Ancillary Equipment Upgrade & Raise 9.89 Miles	LELAND INDUSTRIAL-DELCO 115 kV LINE
					91.62		Beyond 10-Year Planning Horizon	LAKE WACCAMAW-HALLSBORO 115 kV LINE
					93.79		Beyond 10-Year Planning Horizon	HALLSBORO-WHITEVILLE TAP 115 KV LINE
					91.02		Beyond 10-Year Planning Horizon	NICHOLS-MULLINS 115 kV LINE
				93.37	105.90	96.05	*Reconductor 8.65 Miles w/3-1590	MULLINS-MARION 115 KV LINE
					90.07		Operating Procedure	MARION-DILLON TAP 115 KV LINE
						90.49	Beyond 10-Year Planning Horizon	SUMTER-SUMTER GOLD KIST TAP 115 kV LINE
						90.56	Beyond 10-Year Planning Horizon	KINGS HIGHWAY-SUMTER GOLD KIST TAP 115 kV LINE
						93.44	Beyond 10-Year Planning Horizon	KINGS HIGHWAY-SHAW AFB TAP 115 kV LINE
			94.42		94.8	109.89	*Coordinate w/SCEG - Reconductor 7.37 Miles w/3-795	EASTOVER-SHAW AFB TAP 115 kV LINE
						98.99	Beyond 10-Year Planning Horizon	SUMTER-WATEREE 230 kV LINE
			91.53			100.69	Operating Procedure	CAMDEN TAP-CAMDEN CITY 115 KV LINE
	94.67	93.91	106.36	93.59	102.69	115.68	Operating Procedure	CAMDEN-CAMDEN TAP 115 KV LINE
	92.42	91.69	103.49	91.39	100.00	112.34	Operating Procedure	CAMDEN-CAMDEN INVISTA 115 kV LINE
						91.02	Beyond 10-Year Planning Horizon	CAMDEN INVISTA-ELGIN TAP 115 KV LINE
								Bus Differential Relay Failure (P-5)
98.85	N/A	N/A	N/A	101.04	N/A	N/A	Beyond 10-Year Planning Horizon	WEATHERSPOON-WEST LUMBERTON 115 kV LINE
96.21	N/A	N/A	N/A	96.88	N/A	N/A	Beyond 10-Year Planning Horizon	SUTTON-WILMINGTON PCS 115 kV LINE
								Internal Breaker Fault (P-2)
96.33	N/A	N/A	N/A	96.94	N/A	N/A	Beyond 10-Year Planning Horizon	SUTTON-WILMINGTON PCS 115 KV LINE
							*Hypothetical Projects	

Collaborative Plan Projects Selected

Compare alternatives and select preferred solutions

Study Report Prepared

Prepare draft report and distribute to TAG for review and comment

NCTPC 2015 Collaborative Transmission Plan Update

Mark Byrd Duke Energy Progress

2016 Mid-Year Update to the 2015 Collaborative Transmission Plan

- > One DEC project was completed in late 2015
- Four DEP project cost estimates increased and one decreased (net change of + \$3M)
- Total Reliability Project Cost estimates changed from \$156M to \$144M

Reliability Projects in 2015 Plan						
Reliability Project	то	Planned I/S Date				
Durham-RTP 230kV Line, Reconductor	DEP	June 2024				
Brunswick #1 – Jacksonville 230 kV Line Loop-In to Folkstone 230 kV substation	DEP	June 2024				
Raeford 230 kV substation, loop-in Richmond-Ft Bragg Woodruff St 230 kV Line and add 3rd bank	DEP	June 2018				
Jacksonville-Grant's Creek 230 kV Line and Grant's Creek 230/115 kV Substation	DEP	June 2020				

Reliability Projects in 2015 Plan (continued)							
Reliability Project	то	Planned I/S Date					
Newport-Harlowe 230 kV Line, Newport SS and Harlowe 230/115 kV Substation	DEP	June 2020					
Fort Bragg Woodruff St 230 kV Sub, Replace 150 MVA 230/115 kV transformer with two 300 MVA banks & reconductor Manchester 115 kV feeder	DEP	December 2016					
Sutton-Castle Hayne 115 kV North line Rebuild	DEP	June 2018					
Reconductor Norman 230 kV Lines (McGuire-Riverbend)	DEC	Completed December 2015					

Projects to be Added to the 2016 Collaborative Transmission Plan

Two DEP projects to be added in response to OATT request to interconnect two 1X1 combined cycle generating units at Asheville Plant

Reliability Projects to be Added to 2016 Plan						
Reliability Project	ТО	Planned I/S Date				
Asheville Plant, Replace 2-300 MVA 230/115 kV banks with 2-400 MVA banks, reconductor 115 kV ties to switchyard, upgrade breakers, and add 230 kV capacitor bank	DEP	December 2019				
Cane River 230 kV Substation, Construct 150 MVAR SVC	DEP	December 2019				

Regional Studies Reports

Bob Pierce Duke Energy Carolinas

SERC Long Term Study Group Update

SERC Long Term Study Group

- > 2016 series of SERC LTSG cases are complete
- Building 2016 series of MMWG cases
- Updated 2015 series 2016 Winter MMWG model for ERAG study
- Study of 2020 Summer is ongoing
- Provided supporting data for 2016 RAWG study
- ➢ Will be supporting CPP assessment

Eastern Interconnection Planning Collaborative (EIPC)

Planning Activities

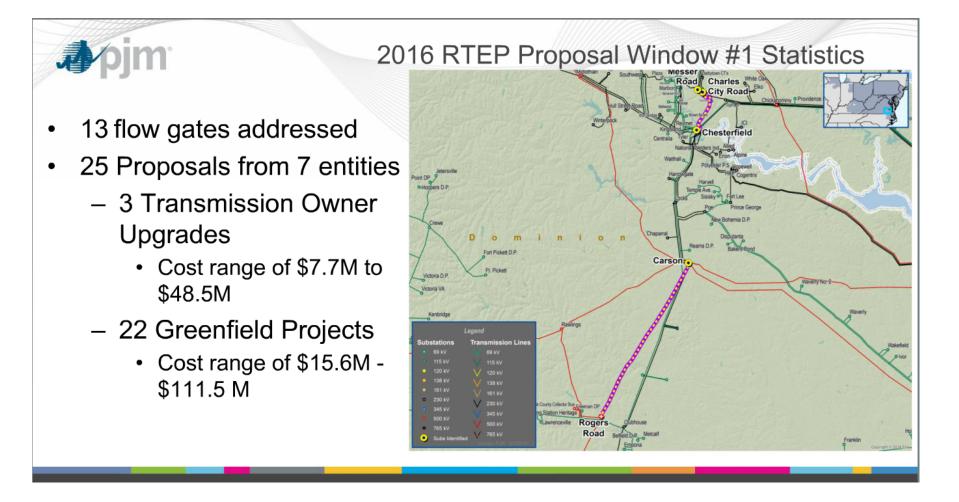
Building library of industry studies for stakeholder education in lieu of an EIPC study

http://www.eipconline.com/

SERTP

- Completed development of 2016 series of models through 2026 Winter
- Stakeholder meeting June 21st in Atlanta
- Provided preliminary 2016 Transmission Expansion Plan

http://www.southeasternrtp.com/



PJM

- PJM and SERTP have begun inter-regional coordination required under Order 1000
- > PJM has released their 2019/2020 BRA results
- ➢ RTEP process

1

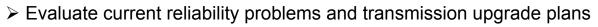
North Carolina Transmission Planning Collaborative

2016 RTEP Proposals Submitted for Window #1

2 nd 500kV Circuit	230kV Clubhouse Option	Rebuild of Existing Infrastructure
2016_1-1A, 2016_1-3D, 2016_1-7C, 2016_1-6B, 2016_1-1B, 2016_1-2B, 2016_1-3C, 2016_1-7A, 2016_1-7B, 2016_1-2A, 2016_1-6A, 2016_1-6C	2016_1-2C, 2016_1-3E, 2016_1-4A, 2016_1-7D, 2016_1-4B, 2016_1-6D	2016_1-3A
 All 2nd 500 kV Proposals mitigated the 500 kV reliability criteria violation Caused additional violations in 2021 analysis Significant New ROW 	 All 230 kV Clubhouse Proposals mitigated the 500 kV reliability criteria violation Line loading exceeds 90% for all Clubhouse Proposals in the year 2020 analysis 	 The proposed rebuild of existing infrastructure fixes the reliability criteria violation Significant Margin Existing Row

NERC Reliability Standards Update

- > DER integration
- MOD standards to MMWG models being impacted by newly effective standards and MMWG process


2016 TAG Work Plan Update

Rich Wodyka Administrator

2016 NCTPC Overview Schedule

Reliability Planning Process

- > Perform analysis, identify problems, and develop solutions
 - Review Reliability Study Results

Local Economic Planning Process

No Local Economic Studies or Public Policy Studies were proposed by Stakeholders

- Reliability Study Results
 - OSC publishes DRAFT Plan
 - TAG review and comment

2016 TAG Work Plan

January – February - March

- > 2016 Study Finalize Study Scope of Work
 - Receive final 2016 Reliability Study Scope for comment
 - Review and provide comments to the OSC on the final 2016 Study Scope – Provide Comments by March 31st
 - Receive request from OSC to provide input on proposed Local Economic Study scenarios and interfaces for study
 - Provide input to the OSC on proposed Local Economic Study scenarios and interfaces for study No Requests
 - Receive request from OSC to provide input in identifying any
 - Provide input to the OSC in identifying any public policies that are driving the need for local transmission for study – No Requests

January – February - March

First Quarter TAG Meeting – March 14th Webinar

> 2016 Study Update

- ✓ Receive a progress report on the Reliability Planning study activities and 2016 Study Scope
- ✓ Provide comments on the final 2016 Study Scope to Rich Wodyka at <u>rawodyka@aol.com</u> by March 31st.

April - May - June

<u>Second Quarter TAG Meeting – Delayed until July 19th</u>

> 2016 Study Update

- Receive a progress report on the Reliability Planning study activities
- ✓ Receive update status of the upgrades in the 2015 Collaborative Plan

July – August – September

- > 2016 Study Update
 - Receive a progress report on the Reliability Planning study activities and preliminary results
 - ✓ TAG will be requested to provide input to the OSC and PWG on the technical analysis performed, the problems identified as well as proposing alternative solutions to the problems identified

> 2016 Selection of Solutions

 TAG will receive feedback from the OSC on any alternative solutions that were proposed by TAG members

July – August – September

<u>Third Quarter TAG Meeting – September 12th (Tentative)</u>

- > 2016 Study Update
 - Receive a progress report on the Reliability Planning study activities and preliminary results

October - November - December

- > 2016 Study Update
 - Receive and comment on final draft of the 2016 Collaborative Transmission Plan report
 - Discuss potential study scope for 2017 studies

October - November - December

Fourth Quarter TAG Meeting – December TBD

- > 2016 Study Update
 - Receive presentation on the final draft report of 2016
 Collaborative Transmission Plan
 - Discuss potential study scope for 2017 studies

TAG Open Forum Discussion

Comments or Questions ?