

TAG Meeting September 19, 2013

NCEMC Office Raleigh, North Carolina

TAG Meeting Agenda

- 1. Administrative Items Rich Wodyka
- 2. FERC Order No. 1000 Rule on Transmission Planning and Cost Allocation – Sam Waters
- 3. Mid-year update on the NCTPC 2012 Collaborative Transmission Plan – Mark Byrd
- 4. 2013 Study Activities Update Orvane Piper
- 5. Report on the Preliminary 2013 Study Results Orvane Piper and Lee Adams
- 6. Regional Studies Update Bob Pierce
- 7. 2013 TAG Work Plan Update Rich Wodyka
- 8. TAG Open Forum Rich Wodyka

FERC Order No. 1000 Rule on Transmission Planning and Cost Allocation Compliance Update

Sam Waters – Duke Energy on behalf of the North Carolina Transmission Planning Collaborative For the 9/19/13 TAG Meeting

Regional Compliance Update

- Duke Energy Carolinas and Progress Energy Carolinas submitted the Order No. 1000 regional compliance filing on October 11, 2012.
- FERC issued an order on February 21, 2013 finding that due to the merger of Duke and Progress, Duke and Progress are no longer separate transmission providers for purposes of Order No. 1000 compliance and therefore the NCTPC no longer qualified as an Order No. 1000 transmission planning region.

- Duke-Progress submitted a request for rehearing/ clarification of the FERC order.
 - Rehearing request Requested that FERC reconsider their finding and find that Duke and Progress are separate transmission providers.
 - Clarification request If FERC does not find that Duke and Progress are separate transmission providers then FERC should clarify that Duke and Progress have a single footprint for Order No. 1000 purposes.

- On May 22, Duke and Progress filed their revised compliance plan with FERC under protest, proposing to join the SERTP.
- Duke's revised regional compliance proposal included the following:
 - Preservation of the NCTPC as a local transmission planning process
 - Use of the SERTP as the regional transmission planning process
- FERC issued their order on the SERTP regional compliance filing on July 18, 2013, without ruling on Duke and Progress' Request for Rehearing.

> NCTPC Stakeholder Reminder

The <u>regional</u> planning process for Order 1000 purposes will be through the SERTP (unless FERC reverses their original Order on the NCTPC proposal).

http://www.southeasternrtp.com

> The next SERTP stakeholder meeting is:

3rd Quarter SERTP Meeting - Thursday, September 26th, Alabama Power Company Headquarters in Birmingham, AL from 9:00 AM - 2:00 PM CST

Sign up for email updates:

http://www.southeasternrtp.com/email_signup.asp 7

Key Compliance Changes Required of the SERTP by the FERC Order

Transmission Planning

FERC is requiring that the transmission planning process include an affirmative obligation to identify more cost efficient or cost-effective transmission projects

Cost Allocation

FERC rejected the use of a single avoided transmission cost allocation methodology

> Public Policy & Non-Incumbent Transmission Developer Reforms

Numerous changes in these areas

Request for rehearing of the order were filed on August 19, 2013.

Significant issues raised include:

- FERC did not allow the Order No. 1000 regional differences to compliance which they had promised in the order.
- The original Order No. 1000 compliance proposals were appropriate due to the environment within the Southeast– extensive state laws and Commission responsibilities over transmission, utility vertical integration, state integrated resource planning process, and utilities operate in a non-RTO environment.
- FERC order could interfere with our state IRP processes (cost allocation examples assume an RTO-like environment with regional joint dispatch).
- FERC order does not reflect the realities of the environment in the Southeast which includes a physical transmission service regime, whereby the transmission needs for the region are identified through the IRP process and through transmission requests for long-term transmission service.
- Mandatory cost allocation for non-jurisdictional utilities may jeopardize participation, flexibility is needed on level of participation.
- NARUC and five state commissions (including the NCUC, the SC ORS), filed requests for rehearing of the order with a focus on state jurisdiction issues.

Interregional Compliance Update

SERTP submitted their interregional compliance filing on July 10, 2013.

http://www.southeasternrtp.com/General/2013/Order%20No. %201000%20Interregional%20Compliance%20Filing %20Package.pdf

- Duke and Progress continue to participate as if members of the SERTP.
- Interventions and Protest of the Order No. 1000 interregional filings were submitted on September 9th. Some protests were filed related to the SERTP Interregional filing.

On a somewhat related note:

- As discussed, the NCTPC process will be considered a "local" process for FERC compliance purposes, with Duke Energy Carolinas and Duke Energy Progress participating in the SERTP for purposes of "regional" planning compliance.
- The Eastern Interconnection Planning Collaborative (EIPC) Stakeholder process will acquire input through regional stakeholder processes.

The EIPC PAs believe that the best approach for building on the considerable work of the interconnection-wide process and the states in forming the EISPC, while ensuring a **regional** focus, is for the stakeholder process to utilize the existing structure of the Order 890-approved processes of each of the **regions** to facilitate stakeholder input and PA interaction for non DOE-funded EIPC efforts. (EIPC Stakeholder Process (05/28/2013)

- NCTPC stakeholders interested in participating in or offering input to the EIPC process should do so by participating in the SERTP
- Guidelines and principles for submitting suggestions for EIPC studies can be found at:

http://www.eipconline.com/uploads/

Guidelines_and_Principles_for_EIPC_Stakeholder_Scenario_Development_080813.pdf

NCTPC 2012 Collaborative Transmission Plan Update

Mark Byrd – Progress

2013 Mid-Year Update to the 2012 Collaborative Transmission Plan

- 3 DEP projects were placed in-service \succ
- **2** DEP projects have in-service date changes
- **1** DEP project scope changed (Raeford) \succ
- **1** DEC project removed (London Creek) \succ
- Total Reliability Project Cost changed from \$318M to \$223M and Merger Projects Cost changed from \$59M to \$67M 14

Reliability Projects in 2012 Plan			
Reliability Project	ТО	Planned I/S Date	
Brunswick 1-Castle Hayne 230kV Line, Construct New Cape Fear River Crossing	DEP	In-Service	
Jacksonville Static VAR Compensator	DEP	In-Service	
Folkstone 230/115kV Substation	DEP	In-Service	
Harris-RTP 230 kV line	DEP	June 2014	

Reliability Projects in 2012 Plan (continued)			
Reliability Project	ТО	Planned I/S Date	
Brunswick 1 - Jacksonville 230 kV Line Loop - in to Folkstone 230 kV substation	DEP	June 2020	
Greenville-Kinston Dupont 230 kV line	DEP	June 2014	
Raeford 230 kV substation, Loop-In Richmond – Ft Bragg Woodruff St 230 kV Line and add 3rd bank	DEP	June 2018	
Durham-RTP 230kV Line, Reconductor	DEP	June 2023	

Reliability Projects in 2012 Plan (Continued)			
Reliability Project	bility Project TO Planned I/S		
Reconductor Caesar 230 kV Lines (Pisgah Tie-Shiloh Switching Station)	DEC	December 2013	
Reconductor London Creek 230 kV Lines (Peach Valley Tie-Riverview Switching Station)	DEC	Removed	

Merger Projects in 2012 Plan			
Merger Project	ТО	Planned I/S Date	
Lilesville-Rockingham 230kV Line #3 – Construct new line	DEP	December 2013	
Person-(DVP) Halifax 230kV Line – Reconductor DVP section (DVP work)	DEP	June 2014	
Antioch 500/230kV Substation – Replace Two Transformer Banks	DEC	June 2014	

NCTPC 2013 Study Activities Update

Orvane Piper – Duke Energy

Purpose of Study

Assess Duke and Progress transmission systems' reliability and develop a single Collaborative Transmission Plan

Steps and Status of the Study Process

1. Assumptions Selected

Completed

- 2. Study Criteria Established
- 3. Study Methodologies Selected
- 4. Models and Cases Developed
- 5. Technical Analysis Performed
- 6. Problems Identified and Solutions Developed
- 7. Collaborative Plan Projects Selected
- 8. Study Report Prepared

Study Assumptions Selected

- > Study Years for reliability analyses:
 - Near-term: 2018 Summer, 2018/2019 Winter
 - Longer-term: 2023 Summer
- > LSEs provided:
 - Input for load forecasts and resource supply assumptions
 - Dispatch order for their resources
- Interchange coordinated between Participants and neighboring systems

Study Criteria Established

- > NERC Reliability Standards
 - Current standards for base study screening
 - Current SERC Requirements
- Individual company criteria

Study Methodologies Selected

- > Thermal Power Flow Analysis
- Each system (Duke and Progress) will be tested for impact of other system's contingencies

Base Case Models Developed

- Started with 2012 series MMWG cases
- Detailed models for Duke and Progress systems
- Adjustments were made based on additional coordination with neighboring transmission systems
- Planned transmission additions from updated 2012 Plan were included in models

Resource Supply Options Selected

- Last year
 - Hypothetical new base load generation
 - NCTPC-PJM inter-regional wind study
- > This year
 - Hypothetical import/export scenarios (16 total)
 - Coordination with PJM for modeling transfers (7 of 16 scenarios)

2023 Hypothetical Import / Export

Resource From	Sink	Test Level (MW)
NORTH – PJM	Duke	1,000
SOUTH – SOCO	Duke	1,000
SOUTH – SCEG	Duke	1,000
SOUTH – SCPSA	Duke	1,000
EAST – Progress (CPLE)	Duke	1,000
WEST – TVA	Duke	1,000

2023 Hypothetical Import / Export

Resource From	Sink	Test Level (MW)
NORTH – PJM	Progress (CPLE)	1,000
SOUTH – SCEG	Progress (CPLE)	1,000
SOUTH – SCPSA	Progress (CPLE)	1,000
WEST – Duke	Progress (CPLE)	1,000
WEST – Duke	SOCO	1,000

2023 Hypothetical Import / Export

Resource From	Sink	Test Level (MW)
NORTH – PJM	Duke / Progress (CPLE)	1,000 / 1,000
WEST – Duke / Progress (CPLE)	PJM	1,000 / 1,000
EAST – Progress (CPLE)	PJM	1,000
WEST – Duke	PJM	1,000
SOUTH – SOCO *	PJM	1,000

NC/SC Joint Wind Study

Location	Scenario #1	Scenario #2	Scenario #3
	MWs by Injection Point		
Wilmington, NC	1,000	2,000	0
Myrtle Beach, SC	1,000	0	2,000
	MWs* by Sink Location		
Duke	600	940	940
Progress	400	620	620
SCEG	500	220	220
SCPSA	500	220	220

*Assumes 100% capacity factor at each of the injection sites.

Technical Analysis

- Conduct thermal screenings of the 2018 and 2023 base cases
- Conduct thermal screenings of the 2023 hypothetical transfer scenarios and coordinate with PJM

Problems Identified and Solutions Developed

- Identify limitations and develop potential alternative solutions for further testing and evaluation
- Estimate project costs and schedule

Collaborative Plan Projects Selected

Compare all alternatives and select preferred solutions

Study Report Prepared

Prepare draft report and distribute to TAG for review and comment

Report on the Preliminary 2013 Study Results

Orvane Piper – Duke Lee Adams – Progress

Preliminary Base Case Results - Duke

2018 and 2023 Summer

- ➢ 3 New Issues Identified
 - Fisher 230 kV (Central-Shady Grove Tap) [2023]
 - Harrisburg 230 kV (Harrisburg-Oakboro) [2021]
 - Sandy Ridge 230 kV (Newport-Morning Star) [2023]
- > 1 Project Removed
 - London Creek 230 kV (Peach Valley Riverview)

Preliminary Base Case Results – Progress

2018 and 2023 Summer

- Sumter-SCE&G Wateree Plant 230kV Line (98% in 2023)
 - Coordinate ancillary equipment upgrades with SCE&G (<\$10M)
- Darlington Co. Plant-SCPSA South Bethune 230kV Line (103% in 2023)
 - Coordinate ancillary equipment upgrades with SCPSA (<\$10M)
- Camden-Camden Invista 115kV Line (91% in 2023)
 - Continue to monitor

Preliminary Base Case Results – Progress

2018-19 Winter

> No Issues identified in Western Area

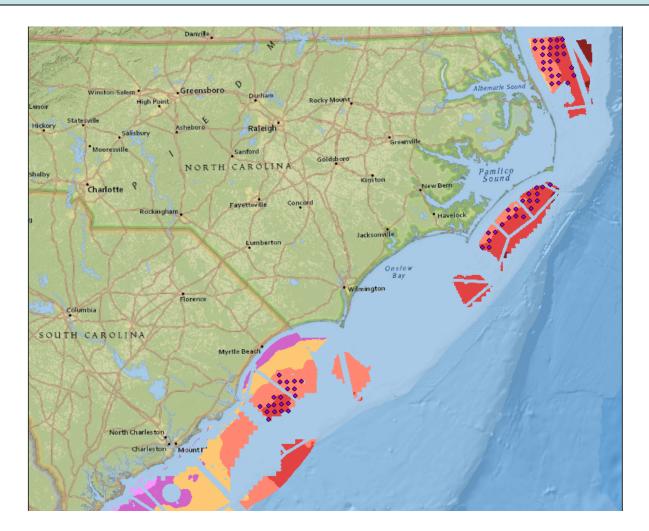
Regional Studies Reports

Bob Pierce - Duke

Carolinas Offshore Wind Integration Case Study (COWICS)

- Duke Energy Carolinas, NREL, UNC-CH, AWS Truepower, ABB
- Objective To provide a thorough and detailed analysis of specific issues, impacts, and costs associated with integrating various amounts of offshore wind generation into the DEC system. The information provided by the study will inform policy decision-makers, industry participants, and utility planners as they evaluate the positives & negatives of offshore wind development.

COWICS


Wind Site Selection

- Analyze wind resource data for the coast of NC/SC
- Project team used proprietary wind models
- GIS based site screening algorithm to select likely locations and associated amounts of capacity for commercially viable offshore wind projects
- Systematic evaluation of quantifiable factors considered
 - wind resource and predicted plant output,
 - distance to potential interconnection points,
 - proximity to sensitive or protected areas

COWICS

Areas excluded from development

Constraint	Offset	Source
Anchorage Area	300 m	NOAA
Beacon	30 m	NOAA
Buoy	30 m	NOAA
Cables	1100 m	NOAA
Cables (International)	1500 m	NOAA
Coastline	5 km	NOAA
Dumping Ground	300 m	NOAA
Fairway Shipping Channel	1 nm	NOAA
Fog Signal	30 m	NOAA
Lights	30 m	NOAA
Military Practice Area	Layer Extent	NOAA
Obstruction	30 m	NOAA
Offshore Platform	30 m	NOAA
Precautionary Area	Layer Extent	NOAA
Shipping Lane	1 nm	NOAA
Wreck	30 m	NOAA
National Marine Sanctuaries	1 mile	NREL
Marine Protected Areas	1 mile	NREL
Shipping Lane	1 mile	NREL
Sanctuary Preservation Area	1 mile	NREL
Significant Natural Heritage Areas (NC)	1 mile	NREL
Sea Turtle Sanctuaries (NC)	1 mile	NREL
Crab Spawning Sanctuaries (NC)	1 mile	NREL
Refuges (SC)	1 mile	NREL
Ocean & Coastal Resource Management Critical Area (SC)	1 mile	NREL
Wind Energy Exclusion Area	Layer Extent	DoD

COWICS

Percentage of nameplate capacity by state for each scenario

	NC	SC	
1000 MW	100%	0%	
3000 MW	78%	22%	
5600 MW	69%	31%	
			_

COWICS

Average output for selected seasons by scenario and zone

WINTER					
1000 MW 3000 MW 5600 MW					
North	376	688	1150		
Central 161 557 86			867		
South	N/A	368	957		

SHOULDER					
1000 MW 3000 MW 5600 MW					
North	308	572	946		
Central 164 571			880		
South					

SUMMER					
1000 MW 3000 MW 5600 MW					
North	243	454	775		
Central 97 32			518		
South	N/A	219	582		

COWICS

Capacity & Energy Profile

- Chosen sites were evaluated to determine the amount of capacity that could feasibly be developed
- Detailed analyses of selected sites performed to determine the capacity & energy profile and variability of the resource
- Ran a proprietary numerical weather prediction model, to create time series of wind speed and direction, air density, and turbulence kinetic energy at 100-m above ground level

COWICS

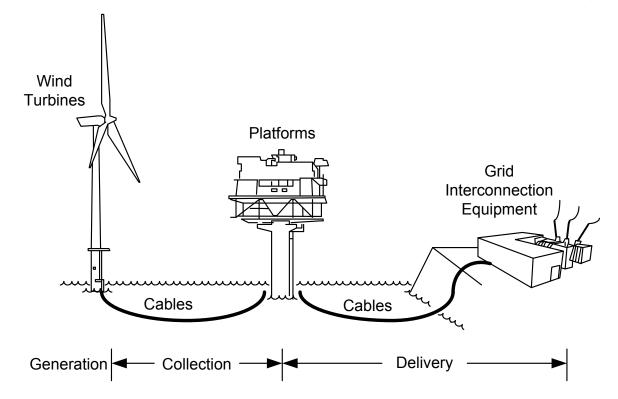
Capacity & Energy Profile

- One time series was created for each wind farm location
- 10-km horizontal resolution to capture spatial variations in the wind resource over the ocean
- Simulations were used to generate 10-year time series (1999-2008) of hourly and 10-minute wind power output
- Converted the model wind output to electricity generation time series
- A frequency distribution of hourly and 10-minute wind and power ramps was examined to characterize the variability of the offshore wind resource

COWICS

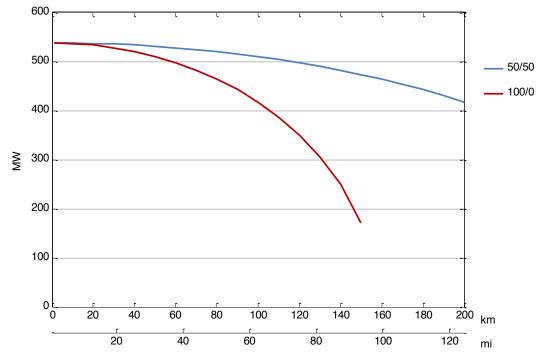
Interconnection & Delivery

- Capacity and energy profiles of the selected sites were used in the transmission system modeling
- Assessed transmission system needs in order to interconnect and deliver the wind energy to load centers
- Used MMWG model with a detailed representation of all of DEC's transmission resources as well as those throughout the Carolinas and the surrounding states


COWICS

Interconnection & Delivery

- Probable locations for the injection of the wind to the onshore transmission system determined using the wind plant proximity to onshore substations, transmission path ratings in the vicinity of these substations and similar considerations
- Studies evaluated NERC TPL Standard Category A & B contingencies to identify areas prone to transmission loadings and voltage limitation that will hamper the transmission of offshore wind


COWICS

Generalized concept for an offshore wind energy system

COWICS

Maximum, real power transfer for 230 kV cables with onshore/offshore reactive compensation splits of 100/0 and 50/50 (2000 kcmil copper cross section)

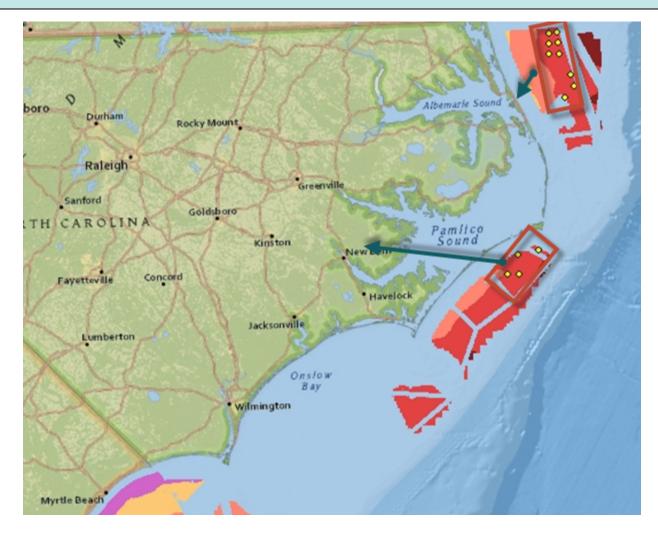
Economic cross-over from the HVAC systems to the HVDC system tends to occur at approximately 50 miles 54

COWICS

Interconnection & Delivery

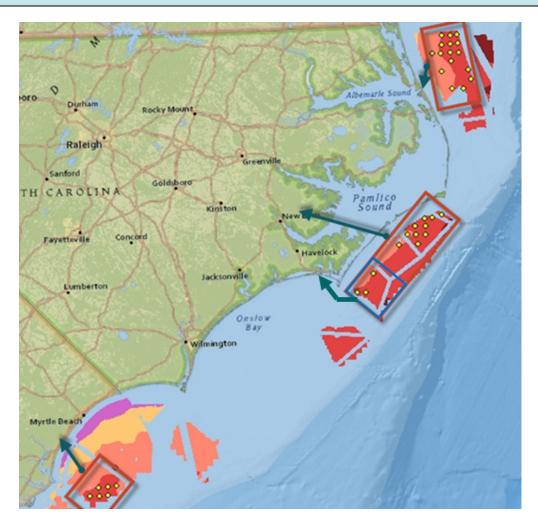
> DVP

- Kitty Hawk, NC
- Landstown, VA

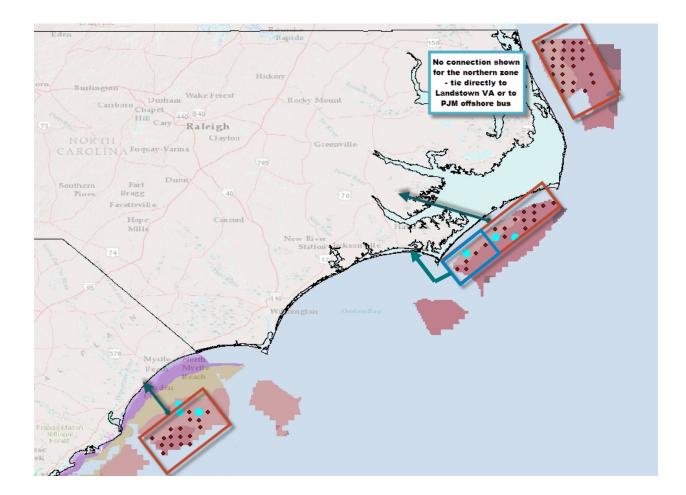

➢ CPLE

- Silver Hill
- New Bern
- Morehead-Wildwood
- > SCPSA
 - Bucksville, SC

COWICS


Interconnection & Delivery

	1000 MW Scenario				
ZONE	ZONE ONSHORE ONSHORE OFFSHORE		CHARACTERISTICS		
	LOCATION	DESIGN	DESIGN		
North	Kitty Hawk	AC connection to	34.5 kV AC	Connects to PJM market.	
		230 kV	collector to 230		
			kV platform		
Central	Silver Hill	DC/AC converter	34.5 kV AC	Bayboro location requires a	
	(Bayboro area)	to 230 kV	collector to AC/DC	DC cable across the Pamlico	
			converter	Sound.	
South	N/A	N/A	N/A	N/A	


	3000 MW Scenario					
ZONE	ONSHORE	ONSHORE	OFFSHORE	CHARACTERISTICS		
	LOCATION	DESIGN	DESIGN			
North	Kitty Hawk	AC connection to	34.5 kV AC	Connects to PJM market.		
		230 kV	collector to 230			
			kV platform			
Central	Silver Hill	DC/AC converter	34.5 kV AC	Bayboro location requires a		
	(Bayboro area)	to 230 kV	collector to AC/	DC cable across the Pamlico		
			DC converter	Sound.		
Central	Morehead-	AC connection to	34.5 kV AC	Sites located too far south to		
	Wildwood	230 kV	collector to 230	connect to Bayboro area.		
	(Morehead City)		kV platform			
South	Bucksville	AC connection to	34.5 kV AC	Reactive compensation likely		
		230 kV	collector to 230	to be required or DC		
			kV platform	connection to onshore		
				system. 58		

	5600 MW Scenario					
ZONE	ONSHORE LOCATION	ONSHORE DESIGN	OFFSHORE DESIGN	ISSUES		
North	Landstown (Virginia	DC/AC converter to	34.5 kV AC collector	Connects to PJM market.		
	Beach area)	230 kV	to AC/DC converter	Requires connection to Virginia		
			or DC collector to	Beach, VA area substation or		
			DC bus	directly to PJM offshore DC bus.		
Central	Morehead-Wildwood	AC connection to	34.5 kV AC collector	Sites located too far south to		
	(Morehead City area)	230 kV	to 230 kV platform	connect to Bayboro area.		
Central	New Bern	DC/AC converter to	34.5 kV AC collector	New Bern location requires a DC		
		230 kV	to AC/DC converter	cable across the Pamlico Sound.		
South	Bucksville	DC/AC converter to	34.5 kV AC collector	Required removing 6 outlier		
		230 kV	to AC/DC converter	wind sites that were too far from		
				the main body of wind sites to		
				reasonably connect. Next 6 "less		
				preferable" sites (blue dots on		
				map) were selected – 3 Central		
				zone & 3 South zone to reach the		
				full 5600 MW study level. 60		

COWICS

61

COWICS

Powerflow Results – Northern Zone

- Existing 230 kV transmission infrastructure primarily serving load in the Kitty Hawk area
- Capable of supporting injection of offshore wind in the 1000 MW and 3000 MW scenarios
- Injection of offshore wind serves the load in the radial load pocket south of Kitty Hawk and the remaining energy reverses the existing flow back into the DVP transmission network. 62

COWICS

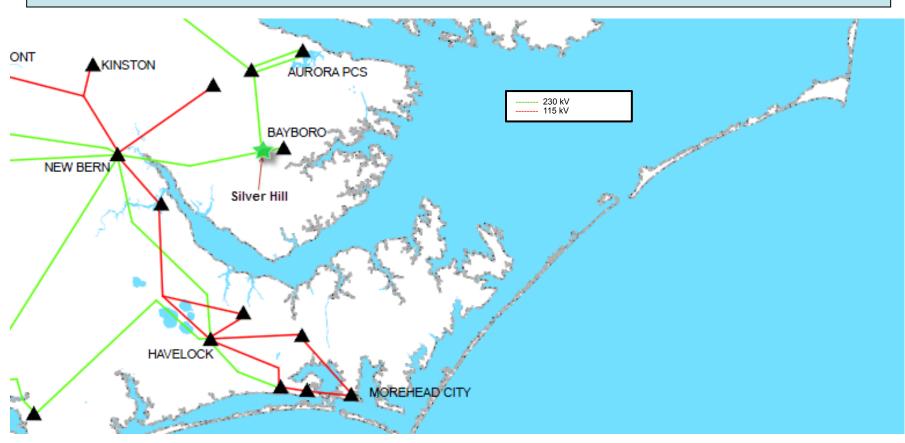
Powerflow Results – Northern Zone

- Flow back into the system is not significant enough to cause overloads under the contingency conditions studied
- If future loads in the Hawk area are less than forecasted in the models, two transmission upgrades will be required as a result of the increased flow back into the system
 - Kitty Hawk Shawboro 230 kV: increase capacity of existing line, \$37 M
 - Kitty Hawk Point Harbor 230 kV: increase capacity of existing line, \$8 M (assuming \$1 M/mile)

COWICS

Powerflow Results – Northern Zone

- In the 5600 MW scenario an onshore connection to either DVP or PEC in NC was not recommended because of the lack of any transmission infrastructure near the NC coastline
- "2012 NCTPC PJM Joint Interregional Reliability Study" report determined DVP's Landstown station could accept up to 2000 MW of offshore injection if a second 230 kV circuit was added between Landstown & Stumpy Lake substations at an estimated cost of \$4 M


COWICS

- Bayboro, NC area at the Silver Hill 230 kV station, near the NC outer banks, is where generation was assumed to connect for the 1000 MW & 3000 MW scenarios
- 5600 MW scenario required injection at PEC's New Bern 230 kV station, located in New Bern, NC bypassing the Silver Hill station with a double circuit 230 kV line from the onshore converter station to New Bern

COWICS

Powerflow Results – Central Zone

The generators' distance from shore required that DC cable with associated converter stations would be required for integration at Silver Hill and New Bern; however, integration at Morehead-Wildwood can be accomplished with a 230 kV AC connection

COWICS

Power injection – Central Zone

WINTER					
1000 MW 3000 MW 5600 MW					
Morehead-Wildwood	N/A	140	273		
New Bern	N/A	N/A	594		
Silver Hill	161	417	N/A		

SHOULDER					
1000 MW 3000 MW 5600 MW					
Morehead-Wildwood	N/A	143	277		
New Bern	N/A	N/A	603		
Silver Hill	164	428	N/A		

SUMMER					
1000 MW 3000 MW 5600 MW					
Morehead-Wildwood	N/A	82	163		
New Bern	N/A	N/A	355		
Silver Hill	97	244	N/A		

COWICS

- Injections at Silver Hill required converting the station from a tap station to a switching station
- The 1000 MW and 3000 MW scenarios did not require additional transmission system modifications

COWICS

- 3000 MW and 5600 scenarios included several offshore wind sites that were located much farther south and were not feasible to connect to either Silver Hill or New Bern, so an additional injection site was selected
- These scenarios analyzed an additional offshore wind injection west of Morehead City, NC at PEC's Morehead-Wildwood 230 kV station

COWICS

- With the connection at New Bern for the 5600 MW scenario, no additional transmission system modifications were necessary to satisfy the contingency conditions studied
- Prior to including the second injection site at Morehead-Wildwood, all of the central zone generation was integrated at New Bern without any upgrades. This shows that the New Bern area can accommodate an injection of at least 880 MW. In the 5600 MW scenario, no additional upgrades are required in the Morehead-Wildwood area. 72

COWICS

Powerflow Results – Southern Zone

- No offshore generation was identified in the southern zone in the 1000 MW scenario
- In the 3000 MW and 5600 MW scenario, generation was assumed to connect onshore at SCPSA's Bucksville 230 kV station. Bucksville is a new station scheduled to be completed in 2014 in the Myrtle Beach area of South Carolina.

COWICS

COWICS

Powerflow Results – Southern Zone

- Transmission system upgrades in the area near Bucksville would be necessary to satisfy contingency conditions
 - Bucksville Perry Road 230 kV Lines: increase capacity of existing lines by adding a second set of conductors per phase (bundling), \$12 M
 - Perry Road 230/115 kV transformer bank #3: replace 150 MVA bank with 250 MVA bank, \$4 M
 - Perry Road Myrtle Beach 115 kV Lines: upgrade conductor from 556 ACSR to bundled 556 ACSR, \$8 M (assuming \$1.5 M / mile)

COWICS

Powerflow Results – Southern Zone

These issues and potential solutions have appeared in previous transmission studies in the area. No additional transmission system modifications are necessary to integrate offshore wind generation in the southern zone under N-1 conditions studied.

COWICS

PHASE II under way

SERC Long Term Study Group Update

SERC Long Term Study Group

Finishing report on 2017 Summer Study Report available with 2014 FERC 715 filings

2013 MMWG model building is in progress. Working with PJM & MISO to get a more representative dispatch of their markets

Carolinas Transmission Collaborative Arrangement (CTCA)

2013 Joint Study - Reliability

- 2019 Summer peak conditions
- VCS 2 and 3 included
- Participants expansion plans included

2013 Joint Study

	Element	Contingency	Potential Issue	Potential Solution
P01	West End-Central EMC Center Church 230 kV Line 1 (Cape Fear-West End)	Harris Gd (TRM) Cumberland-Richmond 500 kV Line 1	Loading (92.5 %)	Existing Operating Procedure to Open West End Terminal [2025]
P02	Chestnut Hills-Milburnie 115 kV Line 1	Harris Gd (TRM) Falls-Honeycutt and Falls-Neuse 230 kV Lines	Loading (92.3 %)	Relocate Neuse 115 kV Substation to Falls-Method 115 kV Line [2025]
P03	Raeford-Red Springs 115 kV Line 1 (Weatherspoon Plant- Raeford)	Brunswick 1 Gd (TRM) Fayetteville-Hamlet and Raeford-Rockfish 230 kV Lines	Loading (91.0 %)	Loop Richmond-Ft Bragg Woodruff St 230 kV Line Into Raeford 230 kV Sub [Revised Project - 2018]

2013 Joint Study

	Element	Contingency	Potential Issue	Potential Solution	
D01	Cane Creek-Pelham Retail B/W 100 kV Line 1 (Mauldin)	V Line 1 Cane Creek-Laurens EC 28 Loadi W/B 100 kV Line 1 (128.6		Block Swapovers [2019] Accelerated 13 Years	
D02	Daniels Retail-Blue Ridge EC 25 Black 100 kV Line 1 (Davidson River)	Belews 1 Gm Pisgah-Shiloh 230 kV Lines Commontower Loss (Caesar)	Loading (102.2 %)	4.66 miles 250 Cu Reconductor [2019] Accelerated 16 Years	
D03	Harrisburg-Oakboro B/W 230 kV Line 1/2 (Harrisburg)	Robinson 2 Gd (TRM) Harrisburg-Oakboro W/BLoading (92.8 %)230 kV Line 2/1 (Harrisburg)(92.8 %)		21.63 miles 954 ACSR Reconductor [2024] Accelerated 12 Years	
D04	Pisgah-Blantyre Retail B/W 100 kV Line 1 (Rugby)	Cliffside 5 Gm Asheville-Mills River 115 kV Line 1	Loading (91.5 %)	4.63 miles 477 ACSR Reconductor [2025] Accelerated 7 Years	

2013 Joint Study

	Element	Clement Contingency		Potential Solution	
D05	Parkwood 500/230 kV Transformer 5	kV Transformer 5Parkwood 500/230 kV Transformer 6(101.2 %)e St-Durham 0 kV Line 1Harris Gd (TRM) Parkwood-Pleasant Garden 500 kV Line 1Loading (94.3 %)		New Operating Procedure [2019] Trips Parallel Bank Accelerated 6 Years	
D06	Ashe St-Durham 100 kV Line 1 (Ashe St White)			3.26 miles 477 ACSR Reconductor [2023] Accelerated 5 Years	
D07	Morning Star-Newport 230 kV Line 1 (Sandy Ridge)	McGuire 1 Gm Richmond-Richmond Reactor 500 kV Line (Richmond)	Loading (98.7 %)	33.59 miles 954 ACSR Add Second Circuit [2026] Accelerated 5 Years	
D08	Glen Raven-Burlington Tap B/W 100 kV Line 1 (Alamance)	Harris Gd (TRM) Glen Raven-Mebane W/B 100 kV Line 1 (Alamance)	Loading (100.9 %)	3.15 miles 2-477 ACSR Reconductor [2022] Accelerated 3 Years	

2013 Joint Study

	Element	Contingency	Potential Issue	Potential Solution
D09	Horseshoe-Asheville Hwy White 100 kV Line 1 (Echo)	Cliffside 5 Gm Horseshoe-Hendersonville Black 100 kV Line 1 (Echo)	Loading (95.6 %)	5.38 miles 477 ACSR Reconductor [2022] Accelerated 3 Years
D10	Morning Star-Union EMC 9 B/W 100 kV Line 1 (Indian Trail)	Robinson 2 Gd (TRM) Monroe-Morning Star W/B 100 kV Line 1 (Indian Trail)	Loading (90.1 %)	5.40 miles 2-366 ACSR Reconductor or New Switching Station [2026] Accelerated 2 Years
D11	Harrisburg-McGuire White 230 kV Line 4 (Mecklenburg)	Robinson 2 Gd (TRM) Harrisburg-McGuire Black 230 kV Line 3 (Mecklenburg)	Loading (103.0 %)	16.98 miles 1272 ACSR Reconductor or Line Reactors [2027] Accelerated 2 Years
D12	Wylie Hydro-York EC 16 100 kV Line 1 (Weddington)	McGuire 1 Gm Morning Star 230/100 kV Transformer and Morning Star-Newport 230 kV Line 1 (Sandy Ridge)	Loading (90.1 %)	1.47 miles 2-477 ACSR Reconductor or New Switching Station [2026] Accelerated 2 Years

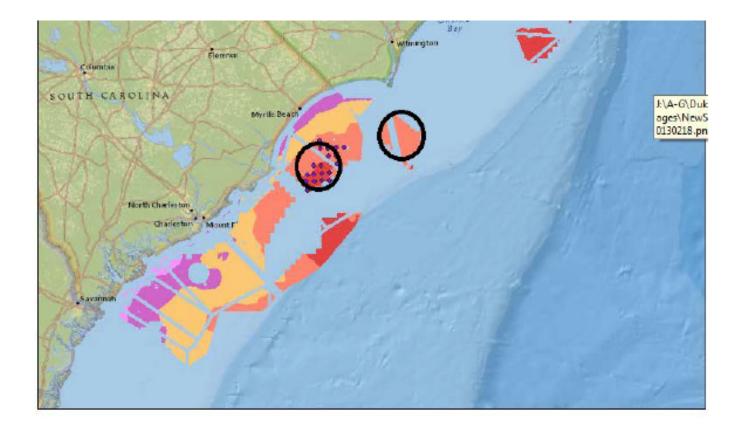
2013 Joint Study

	Element Contingency		Potential Issue	Potential Solution
D13	North Greensboro-Kildare Tap Black 100 kV Line 1 (Graham)	Dan River CC Gm North Greensboro-Glen Raven White 100 kV Line 1 (Graham)	Loading (105.7 %)	3.38 miles 954 ACSR Reconductor [2028]

2013 Joint Study

SOUTH CAROLINA ELECTRIC AND GAS SUMMARY OF POTENTIAL RELIABILITY ISSUES 2019 SUMMER PEAK

Element	Contingency	Potential Issue	Potential Solution
No Issues Found	-	-	-


2013 Joint Study

SOUTH CAROLINA PUBLIC SERVICE AUTHORITY SUMMARY OF POTENTIAL RELIABILITY ISSUES 2019 SUMMER PEAK

	Element	Element Contingency		Potential Solution
01	Perry Road-Myrtle Beach 115 kV Line 1	Base Case Perry Road-Myrtle Beach 115 kV Line 2	Loading (92.5%)	5.40 miles 556 ACSR Reconductor [2022]

- > 2024 Summer peak, shoulder and winter conditions
- Offshore Wilmington & Myrtle Beach areas
- Participants expansion plans included

Scenario	Onshore Collection Site	Nameplate MW into Collection Site	Sink	Nameplate MW	Sink	Nameplate MW	Description
1	Wilmington	1000	DUKE	600	PROGRESS	400	All output sinks
	Myrtle Beach	1000	SCEG	500	SCPSA	500	in host state
2	Wilmington	2000	DUKE	940	PROGRESS	620	All wind connects
	Myrtle Beach	0	SCEG	220	SCPSA	220	in NC
3	Wilmington	0	DUKE	940	PROGRESS	620	All wind connects
	Myrtle Beach	2000	SCEG	220	SCPSA	220	in SC

2013 Joint Study – Offshore Wind

	Summer Peak	Winter Peak	Shoulder
Wilmington	30%	50%	100%
Myrtle Beach	33%	56%	100%

Wilmington area injection point - DEP's Sutton North 230 kV

> Myrtle Beach area injection point - SCPSA's Red Bluff 230 kV bus

1000 MW in NC and SC

- > Each state's injection of 1000 MW of nameplate wind capacity was split
- ➢ SC MW delivered 50% each to SCPSA and SCEG
- ➢ NC MW delivered 60% to Duke, and 40% to Progress
- Delivered via firm interchange between systems.

2000 MW injection into NC and SC individually

- > Split among the four participants' systems according to load ratio share
- ➢ 47% to Duke, 31% to Progress, and 11% each to SCPSA and SCEG
- Delivered via firm interchange between systems.

Compony	Wind Scenario Cost Comparison					
Company	Wind Scenario 1		Wind Scenario 2		Wind Scenario 3	
Duke Energy Progress	\$	10,000,000	\$	60,000,000	\$	20,000,000
Duke Energy Carolinas	\$	125,000	\$	12,325,000	\$	13,540,000
SCEG	\$	0	\$	0	\$	0
SCPSA	\$	0	\$	33,000,000	\$	15,200,000
Total Costs (\$2013)	\$	10,125,000	\$	105,325,000	\$	48,740,000

Duke Energy Progress (DEP)

- Injection point for WS1 and 2 at Sutton North 230 kV Switching Station, loop in 3 existing 230 kV transmission lines - \$10 M
- WS2 requires a new 50-mile 230 kV transmission line from the Sutton North 230 kV Switching Station to the Jacksonville 230 kV Substation - \$50 M
- ➢ WS3 requires a new 30-mile 230 kV transmission line from the Florence 230 kV Substation to the Marion 230 kV Substation – \$20 M

Duke Energy Carolinas (DEC)

- Fictitious 2x1, 776 MW CC plants at Lee and Buck were selected as the most likely sites for future generation
- Not fully dispatched except for generator maintenance cases
- Real CCs would be fully dispatched in the summer peak base case
- Creates of uncertainty in the study results for facilities in the local areas around DEC's Lee Steam station
 - Toxaway/Clinton/Fiber 100 kV lines
 - Shady Grove/Central 230/100 kV transformers

South Carolina Electric & Gas (SCE&G)

> No projects required

South Carolina Public Service Authority (SCPSA)

- Results indicate potential transformer loading issues in the vicinity of Red Bluff under certain 230 kV contingencies
- Potential loading issues between the Kingstree and Hemingway 230 kV substations under certain contingencies in WS2. Second 230 kV line needed between stations - not in SCPSA's current construction plan
- Additional 230 kV line between the Red Bluff and Carolina Forest. substations needed to alleviate the transformer loading in WS1 & 3
- Base case included Red Bluff-Marion 230 kV line currently planned for completion in 2015

Eastern Interconnection Planning Collaborative (EIPC)

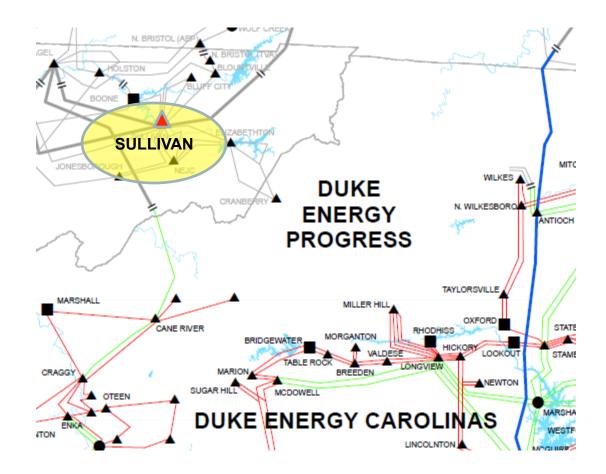
EIPC Work Plan 2013-2014

- Create/modify 2018 and 2023 steady-state load-flow models
 Summer Peak (other seasons as needed)
- Perform AC analysis for model validation
- Working on potential scenario analysis of phase II
- Gas-Electric dependency
 - Comments received on scope of work
 - Gas consultant to be selected
 - SSC meeting in October

http://www.eipconline.com/

SIRPP

SIRPP ECONOMIC STUDIES


- Shelby 500 kV Substation (HVDC) to TVA/Southern Company 3,500 MW (2018, Step 1 Evaluation)
- Sullivan 765 kV Substation (HVDC) to PJM/VACAR 3,500 MW (2018, Step 1 Evaluation)
- TVA to LG&E/KU 500 MW (2015, Step 1 Evaluation)

Sullivan 765 kV Substation (HVDC) to PJM/VACAR

2018 – Summer Peak & Shoulder

3500 MW

- > **Type of Transfer:** Generation to Load/Generation
- Source: A new generator interconnection to the existing Sullivan 765 kV Substation in AEP (Bus # 243210)
- Sink: Load within PJM & Generation within VACAR
 - 2,000 MW PJM
 - 1,500 MW VACAR
- Cases: Summer Peak & Summer Shoulder

Table 1: VACAR sink allocation

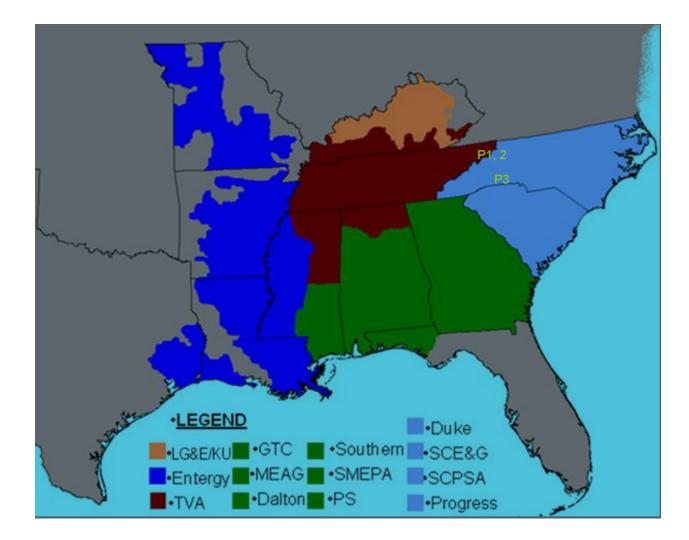

Participating Transmission Owners	Participation Factor (%)	MW Allocation
Progress Energy Carolinas	31.0%	465
Duke Energy	47.5%	712.5
South Carolina Electric & Gas	10.8%	162
Santee Cooper	10.7%	160.5
Total	100.0%	1500

Table C.1. Transmission System Impacts - Duke Energy Carolinas

Thermal Loadings %							
AREA	Limiting Element	Rating (MVA)	Without Request	With Request	Contingency	Scenario	Project
Duke	Horseshoe 115/100 kV 1/2	108.3	94.9	109	Horseshoe 115/100 kV 2/1	Cli5Gm	P1
Duke	Horseshoe-Asheville Highway 100 kV 1	129	91.9	102.9	Horseshoe-Hendersonville 100 kV 1	Base	P2
Duke	Oneal Retail-Pebble Creek Retail 100 kV 1	58	90.7	95.7	Tiger 230/100/44 kV 6	Cli5Gm	P3

<u>Scenario Explanations:</u> Cli5Gm - Cliffside 5 Generator Maintenance, Summer Peak Base – Base, 2018 Summer Peak

Item	Potential Solution	Estimated Need Date	Estimated Cost
P1	Add 115/100 kV Transformer at Horseshoe	2018	\$2,755,000
P2	Reconductor (Bundle) 5.38 miles, 477 ACSR Horseshoe-Asheville Highway 100 kV Lines	2018	\$1,794,000
P3	Reconductor 3.03 miles, 2/0 Cu Oneal Retail-Pebble Creek Retail 100 kV Lines	2021	\$461,000
	\$5,010,000 ⁽¹⁾		

Table C.34. Total Cost of 18H and 18S Sullivan to PJM/VACAR 3500 MW Transfer

Area	Estimated Cost	
Duke Subtotal	\$5,010,000	
Entergy Subtotal	\$0	
LG&E/KU Subtotal	\$5,225,000	
Progress Subtotal	\$0	
SCE&G Subtotal		l due to ear Vogtle
SCPSA Subtotal	\$30,000,000	
Southern Subtotal	\$77,900,000	
TVA Subtotal	\$13,775,000	
TOTAL (\$2012)	\$247,610,000	
		_ 115

SERTP

Planning Activities

- Creating processes to facilitate future planning activities
- Building a library of cases for use by stakeholders approximately 23 cases this year and 46 cases in the future

http://www.southeasternrtp.com/

NERC Reliability Standards Update

- TPL-001-4 expect FERC decision soon
- BES definition NERC comments/vote on 9/4
- 5 year review teams NUC, MOD, VAR, FAC…

2013 TAG Work Plan

Rich Wodyka ITP

2013 NCTPC Overview Schedule

Reliability Planning Process

Evaluate current reliability problems and transmission upgrade plans

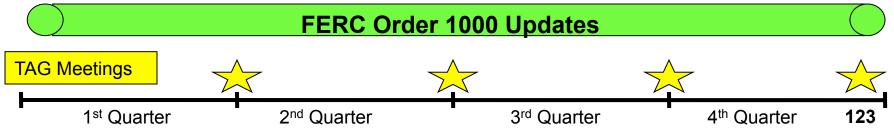
> Perform analysis, identify problems, and develop solutions

Review Reliability Study Results

Enhanced Access Planning Process

Propose and select enhanced access scenarios and interface

> Perform analysis, identify problems, and develop solutions


Review Enhanced Access Study Results

) Coordinated Plan Development

Combine Reliability and Enhanced Results

> OSC publishes DRAFT Plan

TAG review and comment

2013 TAG Work Plan

January – February

- > 2013 Study Finalize Study Scope of Work
 - ✓ Receive final 2013 Reliability Study Scope for comment
 - Review and provide comments to the OSC on the final 2013 Study Scope
 - Receive request from OSC to provide input on proposed Enhanced Transmission Access scenarios and interfaces for study
 - Provide input to the OSC on proposed Enhanced Transmission Access scenarios and interfaces for study

March 14th changed to April 16th

TAG Meeting

2013 Study Update

 Receive a progress report on the Reliability Planning study activities and preliminary results

Order 1000 Update

- Receive report on the direction that the NCTPC is heading on the Order 1000 regional compliance
- Receive an update on the overall Compliance Timeline highlighting when continued stakeholder involvement in the process will occur

April - May - June

- 2013 Study Technical Analysis, Problem Identification, and Solution Development
 - TAG will be requested to provide input to the OSC and PWG on the technical analysis performed, the problems identified as well as proposing alternative solutions to the problems identified
 - TAG will be requested to provide input to the OSC and PWG on any proposed alternative solutions to the problems identified through the technical analysis

April - May - June

TAG Meeting scheduled for June 10th - Teleconference

- > 2013 Study Update
 - Receive a progress report on the Reliability Planning study activities
- > Order 1000 Update
 - Receive an update on the Order 1000 regional compliance work and the discuss changes that will be coming in the regional compliance documents
 - Receive an update on the overall Compliance Timeline highlighting when continued stakeholder involvement in the process will occur

July - August - September

- 2013 Study Technical Analysis, Problem Identification, and Solution Development
 - ✓ Receive a progress report on the Reliability Planning study activities
 - TAG will be requested to provide input to the OSC and PWG on the technical analysis performed, the problems identified as well as proposing alternative solutions to the problems identified

July - August - September

TAG Meeting

> 2013 Study Update

- Receive a progress report on the Reliability Planning study activities and preliminary results
- Receive update status of the upgrades in the 2012 Collaborative Plan

Order 1000 Update

- Receive an update on the Order 1000 regional compliance work and discuss the proposed changes that will be coming in the regional compliance documents
- Receive an update on the overall Compliance Timeline highlighting when continued stakeholder involvement in the process will occur

October - November - December

2013 Selection of Solutions

- TAG will receive feedback from the OSC on any alternative solutions that were proposed by TAG members
- 2013 Study Update
 - Receive and comment on final draft of the 2013 Collaborative Transmission Plan report
 - Discuss potential study scope for 2014 studies

October - November - December TAG Meeting – December 12, 2013 - Tentative

> 2013 Study Update

- Receive presentation on the draft report of 2013
 Collaborative Transmission Plan
- Discuss potential study scope for 2014 studies

> Order 1000 Update

Receive an update on the Order 1000 regional compliance work

TAG **Open Forum Discussion** Comments or Questions?