

South Carolina Regional Transmission Planning

Stakeholder Meeting

Columbia Metropolitan Convention Center

Columbia, SC

March 19, 2009

Goals for Today's Meeting – March 2009

- •Establish Sector Designations
- •Elect Sector Voting Members
- Review, discuss and receive input from the stakeholder group on the current transmission expansion plans
- Review, discuss and receive input from the stakeholder group on Key Assumptions and Data for the next Planning Cycle

Goals for Today's Meeting – March 2009

- •Review and discuss Inter-regional assessment studies
- •Review initial results of SIRPP economic studies related to the SCRTP area
- SCRTP Website

SCRTP Stakeholder Group

Key features of the Stakeholder Group

- Stakeholder Group (SG) participants determine their sector affiliation
- Each sector within the SG will have two voting members (14 total voting members)
- Voting members will be determined by the sector membership annually
- Each Company will have no more than one voting member in the SG
- Majority rule

Key features of the Stakeholder Group (continued)

- SG meetings are open to non-SG members
- Once formed the SG can modify the initial framework, if needed

Voting members will be determined annually by the sector membership during the Fall Meeting

- Cooperatives
- Municipals
- Network and PTP OATT Customers
- Marketers
- Generation Owners/Developers
- Transmission Owners/Operators
- ISO/RTO

Stakeholder Group Breakout

Stakeholder Group Voting Members

Transmission Owners

Municipals

ISO/RTO

Network and PTP

Marketers

Cooperatives

Generation

Overall Planning Cycle

4

A SCANA COMPANY

LinesVoltagesMiles230 kV1219100 & 115 kV178569 kV1713 $\leq 46 kV$ (sub-transmission)152Total4869

Substations

Туре	<u>#</u>
Generation (Step-up)	8
Transmission	80
Cooperative Delivery Point	474
Distribution	80
Industrial Customer	<u> 34 </u>
Total	676

Transmission Interties	<u>230kV</u>	<u>115kV</u>
Duke	4	0
Progress Energy Carolinas	8	1
SCE&G	7	5
Southern	1	0
SEPA	<u> </u>	<u> </u>
	21	7
Total Interties		28

Santee Cooper

- The projects described in these presentations represent the current transmission plans within the SCRTP footprint.
- The expansion plan is continuously reviewed and may change due to changes in assumptions.
- This presentation does not represent a commitment to build.

Transmission Expansion Drivers:

- Criteria Testing
 - NERC Reliability Standards
 - Internal Planning Guidelines
- Customer Needs
 - Distribution & Industrial
 - Wholesale (cooperative & municipal)
 - Network
 - Firm PTP
- Generator Interconnection Needs
- Actual system performance (poor performance)

Santee Cooper Transmission Expansion Plan

Transmission Network
<u>Active Projects</u>

•	Replace Hilton Head Submarine Cable	06/2009
•	Varnville-Bluffton 115 kV Line Reconfiguration	06/2009
•	Shamrock 230-115-69 kV Substation	06/2009
•	Rebuild Georgetown Switching Station-Campfield 115 kV Lines	11/2009
•	Sandy Run-Orangeburg 115 kV Line	04/2010
•	Silver Bluff-North Augusta 115 kV Line Section	05/2010
•	Carolina Forest 230-115 kV Substation	06/2010
•	Rebuild Burke Road Tap for 115 kV Operation	12/2010
•	Pee Dee-Lake City 230 kV Line	01/2011
•	West County Line-North Augusta 115 kV Line Section	03/2011

Transmission Network
<u>Planned Projects</u>

- Carolina Forest-Dunes #2 115 kV Line
- Arcadia-Garden City #2 115 kV Line
- Pomaria 230-69 kV Substation
- Orangeburg 230-115 kV Substation

12/2010 06/2012 12/2012 06/2013

Sandy Run-Orangeburg 115 kV Line

- Scope of Project:
 - Convert Orangeburg-Swansea 69 kV line section to 115 kV
 - Rebuild Burke Road 69 kV
 Tap for 115 kV
 - In-service date 2010, dependent on cooperative's conversion to 115 kV

Sandy Run-Orangeburg 115 kV Line

- Result:
 - Orangeburg-Sandy Run
 115 kV Line a new
 connection between
 Columbia and Orangeburg
 Area

Orangeburg-St. George-Varnville 69 kV System

Orangeburg-St. George-Varnville 69 kV System

- Projects:
 - Shamrock 230/115 kV Substation
 - In-service date June 2009
 - Benefits:
 - Strengthen transmission service to the area
 - Will facilitate future conversion of the 69 kV to 115 kV

Bluffton-Varnville 115 kV Line

- Problem:
 - Contingency:
 - Outage of Bluffton-Rose Hill 115 kV Line Section
 - Result:
 - Low voltage at delivery points served from the line
 - Possible line overload

South Carolina Regional Transmission Planning

Varnville-Bluffton 115 kV Line Reconfiguration

• Solution:

- Construct a double circuit from Bluffton Sub to Limehouse Tap
- Reconfigure the Bluffton-Varnville 115 kV Line to remove Rose Hill
- In-service date June 2009

• Result:

 Relieves low voltage and line loading

Georgetown SS-Campfield 115 kV Lines

Contingency: • Outage of either GTSS-Campfield 115 kV Line

Result:

- Other GTSS-Campfield 115 kV Line overloads
- Operating guide may be used

Santee Cooper

Myrtle Beach Area

- Issues:
 - Large load center served from radial transmission
 - Tightly-integrated transmission system
 - Numerous contingencies impact "source" lines into the area
 - Line loadings projected to exceed their normal rating

Myrtle Beach Area Major Transmission Projects

- Carolina Forest 230/115 kV Substation
- Arcadia-Garden City #2 115 kV Line

Carolina Forest 230/115 kV Substation

• Solution:

- Construct the Carolina Forest 230/115 kV Substation
- Construct 115 kV line from Carolina Forest to Dunes
 115-12 kV Substation

Benefits:

- Provide another bulk source into the central part of Myrtle Beach
- Relieve dependency on Perry Road and Myrtle Beach Substations

Garden City-Arcadia 115 kV Line

- Problem:
 - Contingency:
 - Outage of Campfield-Perry Road 230 kV Line
 - Severe or extreme events in the Myrtle Beach Area
 - Result:
 - Arcadia-Litchfield 115 kV line section may overload
 - Base case loading projected to exceed normal rating in 2012

Garden City-Arcadia 115 kV Line

Solution:

Rebuild the existing Garden
 City-Arcadia 115 kV Line as
 a double circuit line

• Benefit:

 Provide another source into southern portion of Myrtle Beach area.

Columbia-Newberry 69 kV System

Columbia-Newberry 69 kV System

Solution:

- Fold-in VC Summer-Newberry 230 kV Line
- Expand Pomaria 69 kV SS into 230/69 kV Substation

Pee Dee-Lake City 230 kV Line

Long-range plan:

- Construct 230 kV switchyard at the proposed Pee Dee Site
- Fold the Hemingway-Marion 230
 kV Line into Pee Dee
- Construct a 230 kV circuit from Pee Dee to Lake City

Lines	
<u>Voltages</u>	<u>Miles</u>
230 kV	1117
115 kV	1716
46 kV (sub-transmission)	682
33 kV (sub-transmission)	71
Total	3586

1:000

Substations

Type	<u>#</u>
Generation (Step-up)	21
Transmission	45
Distribution	213
Single Customer	<u>163</u>
Total	442

Transmission Interties	<u>230kV</u>	<u>115kV</u>
Duke	2	2
Progress Energy Carolinas	2	1
Santee Cooper	7	5
Southern (Georgia Power)	1	1
SEPA	0	1
	12	10

A SCANA COMPANY

A SCANA COMPANY

SCE&G Generation Queue (next 10 Years)

- 2 Nuclear Units
- 6 Combustion Turbines

Total – 2796 MW

SCE&G Transmission Expansion Plan

SCE&G Active Transmission Projects

- Hopkins Westinghouse Junc.115kV Line Construct
- Cola. Ind. Pk. Westinghouse Junc. 115kV Line Upgrade
- Charleston Airport Vought Aircraft 115kV Line Construct
- Urquhart Belvedere 115kV Line Upgrade
- Salem Sw. Station Add 115kV 24MVAR Capacitor Bank
- Goose Ck Ashley Phosphate Line Upgrade

03/31/2009 03/31/2009 03/31/2009 04/30/2009 05/01/2009 05/01/2009

SCE&G Planned Transmission Projects 2009-2018

- Pepperhill Coosaw Ck 115kV Line Construct
- Pepperhill Ladson Tap 115kV Upgrade to Double Circuit
- Pineland Sub Add 2nd 336MVA Autotransformer
- Accabee Hagood Charlotte St 115kV Construct
- Bayview-Charlotte St 115kV Line Upgrade Overhead
- Belvedere Belvedere Sw. Sta. Rebuild to Dbl Circuit
- Church Creek Savage Rd 115kV Bypass Construct
- Ritter Add 2nd 115kV 36MVAR Capacitor Bank
- St Andrews Queensboro 115kV Line Upgrade
- Graniteville Sub: Add #3 336 Autotransformer
- Denny Terrace Pineland 230kV Line Construct

Santee Cooper.

12/31/2009 12/31/2009 12/31/2009 05/01/2010 05/01/2010 05/01/2010 05/01/2010 05/01/2010 05/01/2010 12/01/2010 05/01/2011

SCE&G Planned Transmission Projects 2009-2018 (continued)

- Lake Murray Trans Add 2nd 336MVA Autotransformer
- Mt Pleasant Bayview 115kV Line Upgrade
- Aiken #3 to Aiken Hampton 115kV Line Upgrade
- Cainhoy Thomas Island 115kV Line Construct
- Cainhoy A.M. Williams115kV #1 Convert to 230kV
- Pepperhill Summerville 230kV Line Construct
- Ritter 230/115kV Sub Construct
- Yemassee Burton 115kV Rebuild to Double Circuit
- Yemassee Add 3rd 336MVA Autotransformer
- Edenwood Lake Murray Trans 230kV Line Upgrade
- Lyles Williams St 115kV Line Upgrade
- Canadys-Church Creek 230KV-Rebuild to Double Circuit

05/01/2011 12/01/2011 05/01/2012 05/01/2012 05/01/2012 05/01/2012 05/01/2012 05/01/2012 05/01/2012 05/01/2013 05/01/2013 12/01/2012

SCE&G Planned Transmission Projects 2009-2018 (continued)

- Aiken Hampton Aiken Transmission 115kV Line Upgrade
- Belvedere Stevens Ck 115kV Line Upgrade to Dbl Circuit
- Cainhoy: Cainhoy 230/115kV Construct
- Lyles Denny Terrace 115kV Lines #1 and #2 Upgrade
- Okatie 230/115kV Sub Construct
- Columbia Industrial Park: Add 2nd 336 Autotransformer
- Faber Place Accabee 115kV Lines #1 and #2 Upgrade
- Cainhoy A.M.W. 230kV #2 and 115kV #2 Lines Construct
- Cainhoy Hamlin 115kV Rebuild to Dbl Circuit
- Lexington Junction 115kV Switching Station Construct
- Urquhart Graniteville 230kV Line #2 Construct
- Queensboro 230/115kV Sub Construct

05/01/2014 05/01/2014 05/01/2014 05/01/2014 05/01/2014 05/01/2015 05/01/2015 05/01/2016 05/01/2016 05/01/2016 05/01/2016 05/01/2018

V.C. Summer Unit #2 Related Projects SCE&G

15 15 15 15				
15 15 15				
15 15				
15				
IJ				
15				
15				
15				
Santee Cooper				
15				
15				
15				
,)))))))				

V.C. Summer Unit #3 Related Projects SCE&G

•	Saluda - Duke 115kV Tielines Ungrade	12/01/2018
•		
•	South Columbia 230/115kV Construct	12/01/2018
•	South Lexington 230/115kV Construct	12/01/2018
•	St George 230kV Switching Station Construct	12/01/2018
•	St George - Canadys 230kV Line Upgrade	12/01/2018
•	St George - Summerville 230kV Line Upgrade	12/01/2018
•	VCS Sub #2 - St George 230kV Double Circuit Construct	12/01/2018
S	antee Cooper	
	ICS Sub? Domaria Sandy Dun Orangaburg St Coargo Varnvilla 220kV	12/01/2010

- VCS Sub2-Pomaria-Sandy Run-Orangeburg-St George-Varnville 230kV 12/01/2010 Sandy Run 230/115kV Construct 12/01/2018 ۲ 12/01/2018
- St George 230/115kV Construct

Transmission Expansion Project Categories

1. New Line

Construct a New 230kV or 115kV Transmission Line

2. Line Upgrade

Rebuild, Reconductor, or Increase Operating Voltage of an Existing Circuit

- Increases Ampacity of Existing Rights-of-Way
- Often Involves Rebuilding a Single Circuit Towerline as a Single Pole Double Circuit
- 3. Autotransformer

Establish New 230/115kV Substation or Increase Capacity at Existing Substations

- Adds Strong 230kV Sources at Load Centers
- Allows 230 and 115kV Systems to Support Each Other
- 4. Capacitor Banks, Switching Stations and Other
 - Can be More Economic Alternatives to More Costly Upgrades
 - Improves System Performance Under Contingencies

1. SCE&G New Lines 2009-2018

2. SCE&G Line Upgrades 2009-2018

Line Upgrade Example: Yemassee-Beaufort Area with Loss of Two Lines

Line Upgrade Example: Rebuild Line #2 as 115kV Double Circuit

3. SCE&G Autotransformer Additions Additions 2009-2018

Autotransformer Example: Mt. Pleasant Area under Heavy Load

Autotransformer Example : Loss of Goose Creek and Peninsula Sources

Autotransformer Example: Adding 230/115kV Transformation at Cainhoy

Autotransformer Example : Future Cainhoy Expansion

4. SCE&G Capacitor Banks and Switching Station Additions 2009-2018

Capacitor Bank Example: Ritter Area with Loss of Canadys and Yemassee Sources

Capacitor Bank Example: Increase Switched Capacitance at Ritter

Stakeholder Comments and Input

Current Transmission Expansion Plans

Santee Cooper

Transmission Planning Key Assumptions and Data

Components

- Demand Forecast
- Transmission Network
- Generation Resources

- Santee Cooper produces a Corporate Load Forecast annually and this forecast is provided to Transmission Planning.
- Forecast incorporates updates to econometric models using consultant-based research.
- Forecast utilizes current historical data and economic outlook for Santee Cooper's service area.

Load forecast is developed with contributions from:

- Santee Cooper (retail, industrial)
- Central Electric Power Cooperative, Inc. (retail, industrial)
- Cities of Bamberg and Georgetown (municipal)

- Transmission Planning uses customer-provided stationlevel forecasts for modeling and reliability assessments.
- Customer-provided forecasts are compared to the corporate load forecast to ensure consistency.
- Processes for tabulating actual and forecast demands are consistently applied for all study efforts.

Santee Cooper Load Forecast is comprised of four primary categories:

- Authority
- Cooperative
- Industrial
- Municipal

Transmission Network

Models include:

- Existing transmission system as well as committed Santee Cooper additions (uncommitted facilities are subject to change in scope or date).
- Neighboring transmission system representations.
- All facilities assumed to be available for service.
- Normal operating status (in-service or OOS) of facilities is represented.

Transmission Network

- Uniform ratings methodology is consistently applied to transmission facilities.
- Base case models are updated annually.
- Study models may be updated prior to any study effort.

Transmission Network <u>Active Projects Included in Models</u>

•	Replace Hilton Head Submarine Cable	06/2009
•	Varnville-Bluffton 115 kV Line Reconfiguration	06/2009
•	Shamrock 230-115-69 kV Substation	06/2009
•	Rebuild Georgetown Switching Station-Campfield 115 kV Lines	11/2009
•	Sandy Run-Orangeburg 115 kV Line	04/2010
•	Silver Bluff-North Augusta 115 kV Line Section	05/2010
•	Carolina Forest 230-115 kV Substation	06/2010
•	Rebuild Burke Road Tap for 115 kV Operation	12/2010
•	Pee Dee-Lake City 230 kV Line	01/2011
•	West County Line-North Augusta 115 kV Line Section	03/2011

Transmission Network <u>Planned Projects Included in Models</u>

- Carolina Forest-Dunes #2 115 kV Line
- Arcadia-Garden City #2 115 kV Line
- Pomaria 230-69 kV Substation
- Orangeburg 230-115 kV Substation

12/2010 06/2012 12/2012 06/2013

Generation Resources

Existing Connected Generation

Cross 1-4

Grainger 1, 2

Hilton Head Turbines 1-3

Jefferies 1, 2, 3, 4, 6 (Hydro)

Jefferies 1-4 (Steam)

Myrtle Beach Turbines 1-5

Montenay Charleston

J.S. Rainey Power Block 1

J.S. Rainey 2A, 2B

J.S. Rainey 3-5

Spillway

St. Stephen 1-3

V.C. Summer

Winyah 1-4

Generation Resources <u>Projected Capacity in Models</u>

Pee Dee (Jan 2014)

V. C. Summer #2 (June 2016)

V. C. Summer #3 (January 2019)

SCE&G

Transmission Planning Key Assumptions and Data

Load Forecasting

Power System Modeling

SCE&G Load Forecasting

- Load Forecast Performed Annually
- SCE&G is normally summer Peaking
- SCE&G creates a summer and winter forecast

Historical and Projected System Peak Load

SCE&G 10 Year Load Forecast

	<u>Summer</u>		<u>Winter</u>
2009	5,113 MW	2009/2010	4,538 MW
2010	5,136 MW	2010/2011	4,561 MW
2011	5,320 MW	2011/2012	4,744 MW
2012	5,431 MW	2012/2013	4,748 MW
2013	5,531 MW	2013/2014	4,812 MW
2014	5,632 MW	2014/2015	4,870 MW
2015	5,733 MW	2015/2016	4,962 MW
2016	5,834 MW	2016/2017	5,056 MW
2017	5,939 MW	2017/2018	5,149 MW
2018	6,041 MW	2018/2019	5,242 MW

Dispersed Load Forecast contains data for each load point on the Transmission System:

- SCE&G Retail Distribution Transformer Loads
- Industrial Customer Loads
- Wholesale Customer Loads

Load Forecast Process

- Obtain peak meter data from most recent season and adjust for load switching
- Develop 10 year projected forecast based on:
 - 10 year historical loading
 - Feedback from Distribution Planning, Local Managers, Large Industrial Group and Transmission Services Manager
- Dispersed forecasted load points are integrated into Corporate forecasted load.
- Wholesale loads are modeled as provided by the customer in the annual submittal

Power System Modeling Assumptions

Model Development Assumptions

- Dispersed substation load forecast
 - Summer/Winter Peak, Off-Peak and Seasonal Load Levels
- Existing generation
 - Input from Generation Maintenance Schedule
- Generation additions
 - Input from Generation Expansion Plan
- Transmission additions
 - Input from Planners and Engineering
- Firm Transmission Service
 - Input from OASIS, Coordinate with Neighbors
- Neighboring Transmission Systems Modeled

Generation Assumptions

SCE&G Generation Expansion

- 34MW of SCE&G Peaking Generation planned for 2010
- 1117MW of SCE&G/Santee Cooper Base Load Nuclear Generation planned for 2016
- 1117MW of SCE&G/Santee Cooper Base Load Nuclear Generation planned for 2019

Stakeholder Comments and Input

Planning Key Assumptions

Regional and Inter-regional Assessment Studies

- SCRTP will review the results of
 - the most recent VACAR, SERC, and ERAG reliability studies
 - ERAG Future Year Study
 - VACAR 2013 Summer / Winter Reliability Study
 - VACAR 2015 Summer Reliability Study
 - SERC 2019 Summer Future Year Study

ERAG Future Year Studies

•Future Year Working Group members have been identified by the ERAG Management Committee

•Scope document for the SERC EAST – RFC 2014 Summer Near Term Study is under reviewed and will be approved in April 2009.

VACAR 2013 Summer / Winter Reliability Study Purpose

•Assess the ability of transmission system to respond to a request for VACAR Reserves to replace a lost generator within VACAR.

•2013 Summer and Winter Peak period.

•Work completed in Two Phases.

VACAR 2013 Summer / Winter Reliability Study June 2008

•Phase 1: Assess transmission performance under normal conditions and loss of a single element.

•Phase 2: Assess transmission performance under multiple contingency events.

- Include combinations with one or two common tower contingencies.

VACAR 2013 Summer / Winter Reliability Study Results

•Phase 1: The assessment under normal and single contingencies identified no thermal overloads in the South Carolina Electric & Gas or Santee Cooper systems.

VACAR 2013 Summer / Winter Reliability Study Results

•Phase 2: The assessment under multiple contingencies identified thermal overloads in the South Carolina Electric & Gas and Santee Cooper systems.

- 4 overloads in South Carolina Electric & Gas system
- 14 overloads in Santee Cooper system
- No facilities within the SCRTP footprint overloaded in Phase 2 deemed as significant facilities

VACAR 2015 Summer Reliability Study March 2009 Purpose

•Analysis of the performance of the members' transmission system that identifies limits to power transfers occurring non-simultaneously among, the VACAR members.

•Analysis of the effects of heavy North to South and South to North parallel transfers on VACAR members inter-company transfer capabilities.

•Analysis of the effects of a moderate West to East intra-PJM parallel transfer on the VACAR members inter-company transfer capabilities.

VACAR 2015 Summer Reliability Study Results

•No Facilities in South Carolina Electric & Gas system were identified as limitations in the 2015 VACAR Summer Reliability Study.

•Two Facilities in Santee Cooper's system were identified as limitations in the 2015 VACAR Summer Reliability Study

- Winyah to Campfield 230 kV Line (SCEG-CPLE and SCEG-DVP)
- Pee Dee to Marion 230 kV Line (SCPSA-Duke)

VACAR 2015 Summer Reliability Study Parallel Transfers

•Two additional facilities in South Carolina Electric & Gas and Santee Coopers' system are impacted for North to South parallel transfers.

•One additional facility in South Carolina Electric & Gas and Santee Coopers' system are impacted for South to North parallel transfers.

•Facilities in South Carolina Electric & Gas and Santee Cooper's system are not impacted by West to East transfers.

SERC LTSG 2019 Future Year Study March 2009 Purpose

Analysis of the performance of the members' transmission system that identifies limits to power transfers occurring non-simultaneously among, the SERC members.
Evaluate the effects of the potential Southeast Generation Expansion as a scenario case.

•Analysis of the performance of the members' transmission system under normal conditions and loss of a single element using the reference and scenario case.

SERC LTSG 2019 Future Year Study Results

•One Facility in Santee Cooper's system was identified as a limitation in 2019.

– Conway to Dunn 115 kV Line

•Four Facilities in South Carolina Electric & Gas' system were identified as limitations in 2019.

- McIntosh to Jasper 115 kV
- V.C. Summer 2 to Newport 230 kV Interconnection (SCEG-Duke)
- Vogtle to Savannah River Services 230 kV Interconnection (SCEG-Southern)
- White Rock to Bush River 115 kV Interconnection (SCEG-Duke)

Regional and Inter-regional Assessment Studies

Questions ?

SIRPP Economic Planning Studies

SCRTP Area Initial Results

SIRPP Activities

- Two Meetings in the last year (04/03/08 and 07/10/08) and three Conference Calls/Webex in the last year (11/13/08, 03/03/09 and 03/16/09)
- Selected Five SIRPP Economic Studies
- Work on Preliminary Results is ongoing

Five Economic Transfer Scenarios Selected for Study

- EES to GA-ITS transfer of 2000MW
- PJM CLASSIC to SOCO transfer of 3000MW
- PJM WEST to SOCO transfer of 2000MW
- SOCO to PJM CLASSIC transfer of 3000MW
- SPP to SIRPP transfer of 5000MW

Southeast Inter-Regional Participation Process 2009 Economic Sensitivity – Preliminary Results February 19, 2009

Study Structure and Assumptions

Transfer	Transfer	Transfer	Transfer	Study		
Sensitivity	Amount	Source	Sink	Year		
SOCO to PJM	3000 MW	SOCO	PJM	2014		
Load Flow Cases						
2008 Series MMWG: 2014 Summer Peak						

Transmission System Impacts

AREA	Limiting Element	Rating (MVA)	TDF	Contingency	Scenario	Project
SCEG	370302 GRANITEVILLE 230 370306 URQ 230 1	509.9	3.17%	370015 SRS 230 370406 CANADYS 230 1 370360 BARNWEL 115 370380 S.R.P. 115 1	N/A	P1
SCEG	370302 GRANITEVILLE 230 370306 URQ 230 1	509.9	3.05%	370015 SRS 230 370380 S.R.P. 115 1 370015 SRS 230 370380 S.R.P. 115 2	N/A	P1
SCEG	370302 GRANITEVILLE 230 370306 URQ 230 1	509.9	3.06%	370360 BARNWEL 115 370380 S.R.P. 115 1 370380 S.R.P. 115 370915 STA#53 115 1	N/A	P1
SCEG	370302 GRANITEVILLE 230 370306 URQ 230 1	509.9	3.16%	370015 SRS 230 370406 CANADYS 230 1 370380 S.R.P. 115 370915 STA#53 115 1	N/A	P1

Ward 230 kV

Southeast Inter-Regional Participation Process 2009 Economic Sensitivity – Preliminary Results February 19, 2009

Potential Solutions for Identified Problems

The following projects are identified as potential solutions to address the identified constraints and are based on the assumptions used in this study. It must be noted that changes to the load forecast, and/or changes in the expansion plan could occur, and would impact the results of this study. In addition, the currently projected improvements to the transmission system were modeled in the cases. Changes to system conditions and/or the transmission plans could also impact the results of this study.

Item	Potential Solution	Estimated Need Date	Estimated Cost
P1	370302 GRANITEVILLE 230 370306 URQ 1 Construct second circuit (Graniteville to Urquhart) Construct a 17.6 mile 230 kV line, Bundled 1272 ACSR conductor at 125°C	5/1/2014	\$4,300,000 ₁

1. Cost to accelerate this existing project two years from 2016 to 2014.

SIRPP Economic Planning Studies

Questions?

SCRTP Website

www.scrtp.com

SCRTP Stakeholder Group

Discussion of SCRTP Process

Next Meeting

- Stakeholders notified by email
- Discuss initial results of reliability studies
- Discuss options to address found constraints
- Stakeholders can provide additional options

South Carolina Regional Transmission Planning

Stakeholder Meeting

Columbia Metropolitan Convention Center

Columbia, SC

March 19, 2009

